Microstructure and composition evolution of SPPs in the oxide film of Zr-1.0Sn-0.25Nb-0.2Fe-0.1Cr during corrosion

IF 7.9 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials & Design Pub Date : 2025-03-11 DOI:10.1016/j.matdes.2025.113830
Tianguo Wei , Xun Dai , Yi Zhao , Dong Wang , Yufeng Du , JiYun Zheng , Chongsheng Long , Chao Sun
{"title":"Microstructure and composition evolution of SPPs in the oxide film of Zr-1.0Sn-0.25Nb-0.2Fe-0.1Cr during corrosion","authors":"Tianguo Wei ,&nbsp;Xun Dai ,&nbsp;Yi Zhao ,&nbsp;Dong Wang ,&nbsp;Yufeng Du ,&nbsp;JiYun Zheng ,&nbsp;Chongsheng Long ,&nbsp;Chao Sun","doi":"10.1016/j.matdes.2025.113830","DOIUrl":null,"url":null,"abstract":"<div><div>The microstructure and composition evolution of SPPs in the oxide film of Zr-1.0Sn-0.25Nb-0.2Fe-0.1Cr alloy during aqueous corrosion at 360 °C is investigated by HRTEM. The results show that SPPs with their distances to the O-M interface less than 500 nm remain metallic and exhibit similar structure and composition as those in Zr matrix. However, the SPPs with their distances to the O-M interface more than 1 μm exhibit obvious oxidation, characterized by the high O content and the appearance of the oxides of Fe, Cr and Zr inside the SPPs. The cracks connected to the SPPs could provide a good O supply and enhance the oxidation of the SPPs. Such cracks also promote the outwards diffusion of Fe and Cr from the SPPs during oxidation. In the oxidized Zr(FeCrNb)<sub>2</sub> particles, Fe has a faster outwards diffusion rate than Cr, while Nb seems to be almost immobile. Under certain conditions, small oxidized SPPs will leave porous regions within the oxide film locally. Tetragonal ZrO<sub>2</sub> is observed occasionally nearby the oxidized SPPs, which is thought to be caused by the doping effect of Fe depleted from the dissolved SPPs.</div></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":"252 ","pages":"Article 113830"},"PeriodicalIF":7.9000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials & Design","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264127525002503","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The microstructure and composition evolution of SPPs in the oxide film of Zr-1.0Sn-0.25Nb-0.2Fe-0.1Cr alloy during aqueous corrosion at 360 °C is investigated by HRTEM. The results show that SPPs with their distances to the O-M interface less than 500 nm remain metallic and exhibit similar structure and composition as those in Zr matrix. However, the SPPs with their distances to the O-M interface more than 1 μm exhibit obvious oxidation, characterized by the high O content and the appearance of the oxides of Fe, Cr and Zr inside the SPPs. The cracks connected to the SPPs could provide a good O supply and enhance the oxidation of the SPPs. Such cracks also promote the outwards diffusion of Fe and Cr from the SPPs during oxidation. In the oxidized Zr(FeCrNb)2 particles, Fe has a faster outwards diffusion rate than Cr, while Nb seems to be almost immobile. Under certain conditions, small oxidized SPPs will leave porous regions within the oxide film locally. Tetragonal ZrO2 is observed occasionally nearby the oxidized SPPs, which is thought to be caused by the doping effect of Fe depleted from the dissolved SPPs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
腐蚀过程中Zr-1.0Sn-0.25Nb-0.2Fe-0.1Cr氧化膜中SPPs的组织及成分演变
采用HRTEM研究了Zr-1.0Sn-0.25Nb-0.2Fe-0.1Cr合金在360℃水溶液腐蚀过程中氧化膜中SPPs的组织和成分演变。结果表明,当SPPs与O-M界面的距离小于500 nm时,其结构和组成与Zr基体相似。而与O- m界面距离大于1 μm的spp则表现出明显的氧化反应,表现为高O含量,spp内部出现Fe、Cr和Zr的氧化物。与spp连接的裂纹可以提供良好的O供应,并增强spp的氧化。在氧化过程中,这些裂纹还促进了Fe和Cr从spp向外扩散。在氧化后的Zr(FeCrNb)2颗粒中,Fe的向外扩散速率比Cr快,而Nb几乎不动。在一定条件下,小的氧化spp会在氧化膜内局部留下多孔区域。在氧化的spp附近偶见四方ZrO2,这被认为是由溶解的spp中Fe的掺杂效应引起的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials & Design
Materials & Design Engineering-Mechanical Engineering
CiteScore
14.30
自引率
7.10%
发文量
1028
审稿时长
85 days
期刊介绍: Materials and Design is a multi-disciplinary journal that publishes original research reports, review articles, and express communications. The journal focuses on studying the structure and properties of inorganic and organic materials, advancements in synthesis, processing, characterization, and testing, the design of materials and engineering systems, and their applications in technology. It aims to bring together various aspects of materials science, engineering, physics, and chemistry. The journal explores themes ranging from materials to design and aims to reveal the connections between natural and artificial materials, as well as experiment and modeling. Manuscripts submitted to Materials and Design should contain elements of discovery and surprise, as they often contribute new insights into the architecture and function of matter.
期刊最新文献
Processing and performance of HVAF-sprayed Fe-based bulk metallic glass coatings: A sustainable alternative Precipitate sequence, strengthening mechanism and properties of Cu-0.9Be-1.0Ni alloys prepared by powder metallurgy Effect of high-frequency beam oscillation on the microstructure and mechanical properties of deep-penetration vacuum laser-welded Inconel 718 joints Interrupted in-situ X-ray computed tomography reveals accelerated densification in recovered 7055 Al powder Achieving superior tensile and fatigue properties than conventional wrought state via hybrid additive-forging manufacturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1