Dynamic models for simulation of Cable-Driven Parallel Robots with elasticity and sagging

IF 4.5 1区 工程技术 Q1 ENGINEERING, MECHANICAL Mechanism and Machine Theory Pub Date : 2025-03-15 DOI:10.1016/j.mechmachtheory.2025.105972
Karim Moussa , Maxime Thieffry , Fabien Claveau , Philippe Chevrel , Stéphane Caro
{"title":"Dynamic models for simulation of Cable-Driven Parallel Robots with elasticity and sagging","authors":"Karim Moussa ,&nbsp;Maxime Thieffry ,&nbsp;Fabien Claveau ,&nbsp;Philippe Chevrel ,&nbsp;Stéphane Caro","doi":"10.1016/j.mechmachtheory.2025.105972","DOIUrl":null,"url":null,"abstract":"<div><div>Cable-Driven Parallel Robots (CDPRs) are a type of parallel robots that uses cables instead of rigid links, making accurate modeling complex due to intricate cable dynamics. For simulation and control applications, it is appropriate to employ simplifying hypotheses to account for cable deformations. However, when high precision is necessary, models capturing the cable deformation become compulsory, making it challenging to balance model fidelity with computation time. This paper addresses this challenge, by proposing and comparing dynamic models of CDPRs that are both accurate and suitable for controller design. Leveraging recent advances in Finite Element Method (FEM) modeling for robotics, this paper extends recent findings and adapts them to the specific case of CDPRs. Additionally, a second model based on the assumed mode approach is extended to 3D context. The accuracy of both models is then compared with that of a lumped parameter model provided by the commercial software MapleSim, focusing on pick-and-place tasks to highlight the strengths and limitations of each approach for establishing a common benchmark. Following initial experimental validation of the models’ precision in a single-cable setup, the FEM model was selected as a comparison reference. Finally, simulation results for an eight-cable 3D suspended robot are presented.</div></div>","PeriodicalId":49845,"journal":{"name":"Mechanism and Machine Theory","volume":"209 ","pages":"Article 105972"},"PeriodicalIF":4.5000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanism and Machine Theory","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094114X25000618","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Cable-Driven Parallel Robots (CDPRs) are a type of parallel robots that uses cables instead of rigid links, making accurate modeling complex due to intricate cable dynamics. For simulation and control applications, it is appropriate to employ simplifying hypotheses to account for cable deformations. However, when high precision is necessary, models capturing the cable deformation become compulsory, making it challenging to balance model fidelity with computation time. This paper addresses this challenge, by proposing and comparing dynamic models of CDPRs that are both accurate and suitable for controller design. Leveraging recent advances in Finite Element Method (FEM) modeling for robotics, this paper extends recent findings and adapts them to the specific case of CDPRs. Additionally, a second model based on the assumed mode approach is extended to 3D context. The accuracy of both models is then compared with that of a lumped parameter model provided by the commercial software MapleSim, focusing on pick-and-place tasks to highlight the strengths and limitations of each approach for establishing a common benchmark. Following initial experimental validation of the models’ precision in a single-cable setup, the FEM model was selected as a comparison reference. Finally, simulation results for an eight-cable 3D suspended robot are presented.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Mechanism and Machine Theory
Mechanism and Machine Theory 工程技术-工程:机械
CiteScore
9.90
自引率
23.10%
发文量
450
审稿时长
20 days
期刊介绍: Mechanism and Machine Theory provides a medium of communication between engineers and scientists engaged in research and development within the fields of knowledge embraced by IFToMM, the International Federation for the Promotion of Mechanism and Machine Science, therefore affiliated with IFToMM as its official research journal. The main topics are: Design Theory and Methodology; Haptics and Human-Machine-Interfaces; Robotics, Mechatronics and Micro-Machines; Mechanisms, Mechanical Transmissions and Machines; Kinematics, Dynamics, and Control of Mechanical Systems; Applications to Bioengineering and Molecular Chemistry
期刊最新文献
A novel slider-crank spring gravity balance module for 1-DOF rotary link and its application to serial manipulators Dynamic models for simulation of Cable-Driven Parallel Robots with elasticity and sagging IK-Geo: Unified robot inverse kinematics using subproblem decomposition Effect of gear tooth root crack on the dynamic response of a planetary geared rotor system Kinematic and dynamic analysis of spatial multibody systems based on a formulation with fully Cartesian coordinates and a generic rigid body
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1