New insights from crystallography into the effect of boundaries on hydrogen embrittlement susceptibility of a 1000 MPa grade heavy gauge high-strength low-alloy steel

IF 7.4 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Corrosion Science Pub Date : 2025-03-13 DOI:10.1016/j.corsci.2025.112866
Rui Zhong , Jingxiao Zhao , Zhenjia Xie , Peng Han , Hua Wang , Jingliang Wang , Chengjia Shang
{"title":"New insights from crystallography into the effect of boundaries on hydrogen embrittlement susceptibility of a 1000 MPa grade heavy gauge high-strength low-alloy steel","authors":"Rui Zhong ,&nbsp;Jingxiao Zhao ,&nbsp;Zhenjia Xie ,&nbsp;Peng Han ,&nbsp;Hua Wang ,&nbsp;Jingliang Wang ,&nbsp;Chengjia Shang","doi":"10.1016/j.corsci.2025.112866","DOIUrl":null,"url":null,"abstract":"<div><div>The present study examines the impact of different types of boundaries on hydrogen embrittlement in a bainitic steel. Different grain boundary distributions were obtained by austenitizing the steel at 1050°C and 950°C, respectively. The decrease in austenitization temperature refines the prior austenite grain, and leads to a higher density of prior austenite grain boundaries (PAGBs) and high-angle packet boundaries (HAPBs), while showing a lower density of block boundaries (BBs). PAGBs and HAPBs, due to their high overall misorientation angle (OMA), possess strong hydrogen-trapping capabilities. Owing to the high specific misorientation angles between {110} slip planes ({110}-SMA) of the adjacent sub-volumes, these boundaries significantly impede the movement of dislocation carrying hydrogen atoms, thereby facilitating the hydrogen enrichment at these boundaries. As a result, a higher density of PAGBs and HAPBs means a reduced hydrogen concentration per unit boundary area, which leads to a decreased susceptibility to hydrogen embrittlement. On the other hand, BBs exhibit high OMA but low {110}-SMA. Therefore, they do not impede dislocation movement significantly. Meanwhile, the majority of BBs are Σ3 boundaries, which have weak hydrogen-trapping capacity and serve as rapid diffusion channels for hydrogen. As a result, hydrogen atoms do not accumulate at Σ3 boundaries but rather accumulate at other boundaries in their vicinity. This work provides a new insight into the effect of different types of grain boundaries on hydrogen diffusion and hydrogen trapping efficacy and offers an approach for grain boundary design to alleviate hydrogen embrittlement in bainitic/martensitic steels.</div></div>","PeriodicalId":290,"journal":{"name":"Corrosion Science","volume":"249 ","pages":"Article 112866"},"PeriodicalIF":7.4000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010938X25001933","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The present study examines the impact of different types of boundaries on hydrogen embrittlement in a bainitic steel. Different grain boundary distributions were obtained by austenitizing the steel at 1050°C and 950°C, respectively. The decrease in austenitization temperature refines the prior austenite grain, and leads to a higher density of prior austenite grain boundaries (PAGBs) and high-angle packet boundaries (HAPBs), while showing a lower density of block boundaries (BBs). PAGBs and HAPBs, due to their high overall misorientation angle (OMA), possess strong hydrogen-trapping capabilities. Owing to the high specific misorientation angles between {110} slip planes ({110}-SMA) of the adjacent sub-volumes, these boundaries significantly impede the movement of dislocation carrying hydrogen atoms, thereby facilitating the hydrogen enrichment at these boundaries. As a result, a higher density of PAGBs and HAPBs means a reduced hydrogen concentration per unit boundary area, which leads to a decreased susceptibility to hydrogen embrittlement. On the other hand, BBs exhibit high OMA but low {110}-SMA. Therefore, they do not impede dislocation movement significantly. Meanwhile, the majority of BBs are Σ3 boundaries, which have weak hydrogen-trapping capacity and serve as rapid diffusion channels for hydrogen. As a result, hydrogen atoms do not accumulate at Σ3 boundaries but rather accumulate at other boundaries in their vicinity. This work provides a new insight into the effect of different types of grain boundaries on hydrogen diffusion and hydrogen trapping efficacy and offers an approach for grain boundary design to alleviate hydrogen embrittlement in bainitic/martensitic steels.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Corrosion Science
Corrosion Science 工程技术-材料科学:综合
CiteScore
13.60
自引率
18.10%
发文量
763
审稿时长
46 days
期刊介绍: Corrosion occurrence and its practical control encompass a vast array of scientific knowledge. Corrosion Science endeavors to serve as the conduit for the exchange of ideas, developments, and research across all facets of this field, encompassing both metallic and non-metallic corrosion. The scope of this international journal is broad and inclusive. Published papers span from highly theoretical inquiries to essentially practical applications, covering diverse areas such as high-temperature oxidation, passivity, anodic oxidation, biochemical corrosion, stress corrosion cracking, and corrosion control mechanisms and methodologies. This journal publishes original papers and critical reviews across the spectrum of pure and applied corrosion, material degradation, and surface science and engineering. It serves as a crucial link connecting metallurgists, materials scientists, and researchers investigating corrosion and degradation phenomena. Join us in advancing knowledge and understanding in the vital field of corrosion science.
期刊最新文献
Effects of temperature on ratchetting behavior and cracking mechanism of 316LN stainless steel in different temperature pressured water environments The effects of hydrogen and microstructure on crack initiation and propagation of X65 pipeline steel New insights from crystallography into the effect of boundaries on hydrogen embrittlement susceptibility of a 1000 MPa grade heavy gauge high-strength low-alloy steel High-temperature corrosion resistance of weld overlay In625 coating in aggressive environments of waste incinerators Effect of minor addition of Zn on precipitate crystal structures and intergranular corrosion in 6082 Al-Mg-Si alloys
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1