Y.H. Fan , R. Kerry Rowe , R.W.I. Brachman , Jamie F. VanGulck
{"title":"The effect of a bench on leakage through a cover: A field and numerical assessment","authors":"Y.H. Fan , R. Kerry Rowe , R.W.I. Brachman , Jamie F. VanGulck","doi":"10.1016/j.geotexmem.2025.02.005","DOIUrl":null,"url":null,"abstract":"<div><div>Field experiments are conducted to quantify the leakage through an 11-mm-diameter hole in the liner on slopes with and without a bench under waste cover conditions. Over 14 months, with a total precipitation of 947 mm, a 0.68 m bench on a 4H: 1V slope results in a 43-fold increase in leakage (from 6.5 L to 282 L) compared to the reference section without a bench. Substantial leakage is attributed to snowmelt occurring at low temperatures. 3D numerical modelling is conducted and shows good agreement with the measured leakage induced by both rainfall and snowmelt. Parametric studies are conducted to further analyze the impact of hole locations, slope length, and slope gradient on leakage. The validated numerical model is used to predict potential leakage in a real case scenario, which features benches formed by differential settlement observed after 3-year service as a landfill cover. This paper contributes to enhancing leakage prediction so as to optimize the design of slope and bench configurations in waste covers.</div></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"53 4","pages":"Pages 882-896"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geotextiles and Geomembranes","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266114425000305","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Field experiments are conducted to quantify the leakage through an 11-mm-diameter hole in the liner on slopes with and without a bench under waste cover conditions. Over 14 months, with a total precipitation of 947 mm, a 0.68 m bench on a 4H: 1V slope results in a 43-fold increase in leakage (from 6.5 L to 282 L) compared to the reference section without a bench. Substantial leakage is attributed to snowmelt occurring at low temperatures. 3D numerical modelling is conducted and shows good agreement with the measured leakage induced by both rainfall and snowmelt. Parametric studies are conducted to further analyze the impact of hole locations, slope length, and slope gradient on leakage. The validated numerical model is used to predict potential leakage in a real case scenario, which features benches formed by differential settlement observed after 3-year service as a landfill cover. This paper contributes to enhancing leakage prediction so as to optimize the design of slope and bench configurations in waste covers.
期刊介绍:
The range of products and their applications has expanded rapidly over the last decade with geotextiles and geomembranes being specified world wide. This rapid growth is paralleled by a virtual explosion of technology. Current reference books and even manufacturers' sponsored publications tend to date very quickly and the need for a vehicle to bring together and discuss the growing body of technology now available has become evident.
Geotextiles and Geomembranes fills this need and provides a forum for the dissemination of information amongst research workers, designers, users and manufacturers. By providing a growing fund of information the journal increases general awareness, prompts further research and assists in the establishment of international codes and regulations.