Design of mesoporous sulfated zirconia nanocrystals with dual Brønsted acid and Lewis acid

Yang Liu , Minqi Jiang , Yi Feng , Jianfeng Yao
{"title":"Design of mesoporous sulfated zirconia nanocrystals with dual Brønsted acid and Lewis acid","authors":"Yang Liu ,&nbsp;Minqi Jiang ,&nbsp;Yi Feng ,&nbsp;Jianfeng Yao","doi":"10.1016/j.nxmate.2025.100590","DOIUrl":null,"url":null,"abstract":"<div><div>Sulfated ZrO<sub>2</sub> (S-ZrO<sub>2</sub>) nanocrystals with a pure tetragonal phase and mesopores were designed by calcination of sulfated UiO-66. Benefiting from the inhibitory effect of organic linkers and sulfate ions on the growth of crystals during the pyrolysis process, S-ZrO<sub>2</sub>, derived from sulfated UiO-66, is composed of nano-sized crystals with a size of about 5 nm. In addition, the released gases from the decomposition of organic linkers enable S-ZrO<sub>2</sub> with mesopores, avoiding the severe agglomeration of ZrO<sub>2</sub> nanocrystals. As a result, the as-synthesized S-ZrO<sub>2</sub> nanocrystals can function as the promising catalysts containing dual Brønsted acidic and Lewis acidic sites to display a good catalytic activity in the esterification reaction of propanoic acid with methanol. In particular, a good conversion of 96.8 % for propanoic acid was achieved at 7 h, higher than that of commercial ZrO<sub>2</sub>-based sulfated ZrO<sub>2</sub> (74 %) and pristine UiO-66 (24 %).</div></div>","PeriodicalId":100958,"journal":{"name":"Next Materials","volume":"8 ","pages":"Article 100590"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S294982282500108X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sulfated ZrO2 (S-ZrO2) nanocrystals with a pure tetragonal phase and mesopores were designed by calcination of sulfated UiO-66. Benefiting from the inhibitory effect of organic linkers and sulfate ions on the growth of crystals during the pyrolysis process, S-ZrO2, derived from sulfated UiO-66, is composed of nano-sized crystals with a size of about 5 nm. In addition, the released gases from the decomposition of organic linkers enable S-ZrO2 with mesopores, avoiding the severe agglomeration of ZrO2 nanocrystals. As a result, the as-synthesized S-ZrO2 nanocrystals can function as the promising catalysts containing dual Brønsted acidic and Lewis acidic sites to display a good catalytic activity in the esterification reaction of propanoic acid with methanol. In particular, a good conversion of 96.8 % for propanoic acid was achieved at 7 h, higher than that of commercial ZrO2-based sulfated ZrO2 (74 %) and pristine UiO-66 (24 %).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dimensionality-driven sustainable biocarbon-based microwave absorbers: From bio-waste to functional materials Design of mesoporous sulfated zirconia nanocrystals with dual Brønsted acid and Lewis acid Material-specific machining optimization of Ti6Al4V alloy under MQL: A sustainability-centric approach Preparation of golden polyaniline and interpretation with a Lorentz model Growth temperature-induced interfacial degradation in superconducting NbN/insulator HfO2 bilayers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1