Retraction Notice: A Proposed MIMO Antenna Prototype for Frequency Identification

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Sensors Journal Pub Date : 2025-03-06 DOI:10.1109/JSEN.2025.3546793
Amin H. Al Ka’bi
{"title":"Retraction Notice: A Proposed MIMO Antenna Prototype for Frequency Identification","authors":"Amin H. Al Ka’bi","doi":"10.1109/JSEN.2025.3546793","DOIUrl":null,"url":null,"abstract":"Frequency Identification in Cognitive Radio (CR) networks is the key step to find the unused frequencies, so CR networks use less bandwidth and energy. The MIMO antenna system which is proposed for spectrum sensing in CR systems is a small super-wideband (SWB) design, which includes three band-notched diversity antennas. There are four identical semi-elliptical monopole antennas, directed perpendicularly with feed lines gently widened CWG type, which constitute a MIMO antenna. Every SWB characteristic has an antenna that has the cross-slot carved through its bottom just like a radiator. The antenna radiator is composed of two linked slits that replicate the image of the split ring resonator and also have a backward-S shaped slit to ensure that there is no negative impact on SWB. The antenna has a bandwidth ratio of 36:1mm and 0.2-43mm waves. In addition, 18dB of isolation and an envelope correlation coefficient of less than 0.01 have been implemented in a resonant frequency band for the MIMO antenna that has orthogonally placed antenna elements. On a frequency of 3.5GHz, 5.5GHz, and 8.5GHz, the gain level drops leading to a maximum gain of 4 dBi for the antenna. The proposed antenna has higher bandwidth ratio and hence incorporates easily into an existing RF equipment. In this manner, this SWB, MIMO antenna demonstrates superiority over those mentioned in the literature with a multi-notched band. In the same manner, we obtain three small super-wideband (SWB), which have not been filtered, so, the design and implementation of the antenna is feasible.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 6","pages":"10512-10512"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10916580","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10916580/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Frequency Identification in Cognitive Radio (CR) networks is the key step to find the unused frequencies, so CR networks use less bandwidth and energy. The MIMO antenna system which is proposed for spectrum sensing in CR systems is a small super-wideband (SWB) design, which includes three band-notched diversity antennas. There are four identical semi-elliptical monopole antennas, directed perpendicularly with feed lines gently widened CWG type, which constitute a MIMO antenna. Every SWB characteristic has an antenna that has the cross-slot carved through its bottom just like a radiator. The antenna radiator is composed of two linked slits that replicate the image of the split ring resonator and also have a backward-S shaped slit to ensure that there is no negative impact on SWB. The antenna has a bandwidth ratio of 36:1mm and 0.2-43mm waves. In addition, 18dB of isolation and an envelope correlation coefficient of less than 0.01 have been implemented in a resonant frequency band for the MIMO antenna that has orthogonally placed antenna elements. On a frequency of 3.5GHz, 5.5GHz, and 8.5GHz, the gain level drops leading to a maximum gain of 4 dBi for the antenna. The proposed antenna has higher bandwidth ratio and hence incorporates easily into an existing RF equipment. In this manner, this SWB, MIMO antenna demonstrates superiority over those mentioned in the literature with a multi-notched band. In the same manner, we obtain three small super-wideband (SWB), which have not been filtered, so, the design and implementation of the antenna is feasible.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
期刊最新文献
IEEE Sensors Council Retraction Notice: A Proposed MIMO Antenna Prototype for Frequency Identification Table of Contents Front Cover IEEE Sensors Journal Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1