Generalized Metaplectic Convolution-Based Cohen's Class Time-Frequency Distribution: Theory and Application

IF 2.9 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE open journal of signal processing Pub Date : 2025-02-25 DOI:10.1109/OJSP.2025.3545337
Manjun Cui;Zhichao Zhang;Jie Han;Yunjie Chen;Chunzheng Cao
{"title":"Generalized Metaplectic Convolution-Based Cohen's Class Time-Frequency Distribution: Theory and Application","authors":"Manjun Cui;Zhichao Zhang;Jie Han;Yunjie Chen;Chunzheng Cao","doi":"10.1109/OJSP.2025.3545337","DOIUrl":null,"url":null,"abstract":"The convolution type of the Cohen's class time-frequency distribution (CCTFD) is a useful and effective time-frequency analysis tool for additive noises jamming signals. However, it can't meet the requirement of high-performance denoising under low signal-to-noise ratio conditions. In this paper, we define the generalized metaplectic convolution-based Cohen's class time-frequency distribution (GMC-CCTFD) by replacing the traditional convolution operator in CCTFD with the generalized convolution operator of metaplectic transform (MT). This new definition leverages the high degrees of freedom and flexibility of MT, improving performance in non-stationary signal analysis. We then establish a fundamental theory about the GMC-CCTFD's essential properties. By integrating the Wiener filter principle with the time-frequency filtering mechanism of GMC-CCTFD, we design a least-squares adaptive filter in the Wigner distribution-MT domain. This allows us to achieve adaptive filtering denoising based on GMC-CCTFD, giving birth to the least-squares adaptive filter-based GMC-CCTFD. Furthermore, we conduct several examples and apply the proposed filtering method to real-world datasets, demonstrating its superior performance in noise suppression compared to some state-of-the-art methods.","PeriodicalId":73300,"journal":{"name":"IEEE open journal of signal processing","volume":"6 ","pages":"348-368"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10902015","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of signal processing","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10902015/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The convolution type of the Cohen's class time-frequency distribution (CCTFD) is a useful and effective time-frequency analysis tool for additive noises jamming signals. However, it can't meet the requirement of high-performance denoising under low signal-to-noise ratio conditions. In this paper, we define the generalized metaplectic convolution-based Cohen's class time-frequency distribution (GMC-CCTFD) by replacing the traditional convolution operator in CCTFD with the generalized convolution operator of metaplectic transform (MT). This new definition leverages the high degrees of freedom and flexibility of MT, improving performance in non-stationary signal analysis. We then establish a fundamental theory about the GMC-CCTFD's essential properties. By integrating the Wiener filter principle with the time-frequency filtering mechanism of GMC-CCTFD, we design a least-squares adaptive filter in the Wigner distribution-MT domain. This allows us to achieve adaptive filtering denoising based on GMC-CCTFD, giving birth to the least-squares adaptive filter-based GMC-CCTFD. Furthermore, we conduct several examples and apply the proposed filtering method to real-world datasets, demonstrating its superior performance in noise suppression compared to some state-of-the-art methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.30
自引率
0.00%
发文量
0
审稿时长
22 weeks
期刊最新文献
Generalized Metaplectic Convolution-Based Cohen's Class Time-Frequency Distribution: Theory and Application Unsupervised Angularly Consistent 4D Light Field Segmentation Using Hyperpixels and a Graph Neural Network Non-Stationary Delayed Combinatorial Semi-Bandit With Causally Related Rewards Extending Guided Filters Through Effective Utilization of Multi-Channel Guide Images Based on Singular Value Decomposition Robustifying Routers Against Input Perturbations for Sparse Mixture-of-Experts Vision Transformers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1