Generating high-resolution DEMs in mountainous regions using ICESat-2/ATLAS photons

Yi Zhao , Bin Wu , Gefei Kong , He Zhang , Jianping Wu , Bailang Yu , Jin Wu , Hongchao Fan
{"title":"Generating high-resolution DEMs in mountainous regions using ICESat-2/ATLAS photons","authors":"Yi Zhao ,&nbsp;Bin Wu ,&nbsp;Gefei Kong ,&nbsp;He Zhang ,&nbsp;Jianping Wu ,&nbsp;Bailang Yu ,&nbsp;Jin Wu ,&nbsp;Hongchao Fan","doi":"10.1016/j.jag.2025.104461","DOIUrl":null,"url":null,"abstract":"<div><div>High-resolution (≤10 m) digital elevation models (DEMs) are essential for obtaining accurate terrain information and are integral to geographic analysis. However, a majority of currently available DEMs datasets possess a relatively coarse spatial resolution (≥30 m), which limits the terrain features and details that can be accurately represented. Furthermore, due to the substantial production costs associated with high-resolution DEMs, these products are often unavailable or difficult to obtain in numerous countries and regions, particularly in less developed areas. Here, we introduced a novel method named the Spatial interpolation knowledge-constrained Conditional Generative Adversarial Network (SikCGAN). This method can generate high-resolution DEMs from publicly available data sources, specifically the photons collected by the Advanced Topographic Laser Altimeter System (ATLAS) carried by the Ice, Cloud and land Elevation Satellite-2 (ICESat-2). SikCGAN takes ICESat-2/ATLAS photons as the single data source and incorporates spatial interpolation knowledge constraints into a Conditional Generative Adversarial Network (CGAN) to generate DEMs at a 10-m spatial resolution. A case study conducted in boreal mountainous regions demonstrates SikCGAN’s remarkable ability to produce high-resolution and highly accurate DEMs, with an MAE of 22.09 m and RMSE of 29.25 m, which reduced error by 37 %–46 % compared to benchmark methods. Additionally, the results reveal that SikCGAN has remarkable resiliece to interference, including variations in spatial distance, terrain slope, and ATL03 photon count, this further elucidates and substantiates the effectiveness of SikCGAN. These findings demonstrate that SikCGAN provides innovative solutions for generating new high-resolution DEMs products and potentially supplementing existing ones to overcome their limitations.</div></div>","PeriodicalId":73423,"journal":{"name":"International journal of applied earth observation and geoinformation : ITC journal","volume":"138 ","pages":"Article 104461"},"PeriodicalIF":7.6000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of applied earth observation and geoinformation : ITC journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569843225001086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

Abstract

High-resolution (≤10 m) digital elevation models (DEMs) are essential for obtaining accurate terrain information and are integral to geographic analysis. However, a majority of currently available DEMs datasets possess a relatively coarse spatial resolution (≥30 m), which limits the terrain features and details that can be accurately represented. Furthermore, due to the substantial production costs associated with high-resolution DEMs, these products are often unavailable or difficult to obtain in numerous countries and regions, particularly in less developed areas. Here, we introduced a novel method named the Spatial interpolation knowledge-constrained Conditional Generative Adversarial Network (SikCGAN). This method can generate high-resolution DEMs from publicly available data sources, specifically the photons collected by the Advanced Topographic Laser Altimeter System (ATLAS) carried by the Ice, Cloud and land Elevation Satellite-2 (ICESat-2). SikCGAN takes ICESat-2/ATLAS photons as the single data source and incorporates spatial interpolation knowledge constraints into a Conditional Generative Adversarial Network (CGAN) to generate DEMs at a 10-m spatial resolution. A case study conducted in boreal mountainous regions demonstrates SikCGAN’s remarkable ability to produce high-resolution and highly accurate DEMs, with an MAE of 22.09 m and RMSE of 29.25 m, which reduced error by 37 %–46 % compared to benchmark methods. Additionally, the results reveal that SikCGAN has remarkable resiliece to interference, including variations in spatial distance, terrain slope, and ATL03 photon count, this further elucidates and substantiates the effectiveness of SikCGAN. These findings demonstrate that SikCGAN provides innovative solutions for generating new high-resolution DEMs products and potentially supplementing existing ones to overcome their limitations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International journal of applied earth observation and geoinformation : ITC journal
International journal of applied earth observation and geoinformation : ITC journal Global and Planetary Change, Management, Monitoring, Policy and Law, Earth-Surface Processes, Computers in Earth Sciences
CiteScore
12.00
自引率
0.00%
发文量
0
审稿时长
77 days
期刊介绍: The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.
期刊最新文献
Editorial Board Near real-time land surface temperature reconstruction from FY-4A satellite using spatio-temporal attention network Assessing urban residents’ exposure to greenspace in daily travel from a dockless bike-sharing lens Satellite retrieval of bottom reflectance from high-spatial-resolution multispectral imagery in shallow coral reef waters Using street view imagery and localized crowdsourcing survey to model perceived safety of the visual built environment by gender
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1