Netrin-1 binding to UNC5b improves post-stroke neuronal ferroptosis via AMPK-BACH1 pathway

IF 4.2 3区 医学 Q1 PHARMACOLOGY & PHARMACY European journal of pharmacology Pub Date : 2025-03-12 DOI:10.1016/j.ejphar.2025.177507
Ying Luo , Meiling Yao , Rui Wang , Songjie Liao , Jian Yu
{"title":"Netrin-1 binding to UNC5b improves post-stroke neuronal ferroptosis via AMPK-BACH1 pathway","authors":"Ying Luo ,&nbsp;Meiling Yao ,&nbsp;Rui Wang ,&nbsp;Songjie Liao ,&nbsp;Jian Yu","doi":"10.1016/j.ejphar.2025.177507","DOIUrl":null,"url":null,"abstract":"<div><div>Ferroptosis contributes to neuronal destruction after ischemic stroke which may be improved by inhibiting BTB domain and CNC homolog 1 (BACH1), a recently recognized ferroptosis facilitator. Axon guidance molecule netrin-1 (Ntn1) functions in neuroprotection against ischemic insult by engaging into its receptor of uncoordinated-5 homolog B (UNC5b) <em>via</em> adenosine 5‘-monophosphate-activated protein kinase (AMPK), which potentially binds to BACH1. Whether Ntn1/UNC5b regulates post-stroke ferroptosis through AMPK-BACH1 pathway remains unclear. Ntn1 supplementation and UNC5b knockdown by siRNA were performed in photo-thrombosis stroke mice and oxygen-glucose deprivation-treated HT22 neurons. AMPK inhibitor BAY3827 and BACH1 activator Leptomycin B (LMB) were administrated. Ferroptosis was determined by ferroptosis-associated proteins (FSP1, GPX4 and ACSL4), Fe<sup>2+</sup>, malondialdehyde and mitochondrial morphology. BACH1 and p-AMPK/AMPK as well as the interaction between them were examined by Western blot and co-immunoprecipitation. Neuronal ferroptosis and the protein levels of BACH1 and p-AMPK were increased after photo-thrombosis and oxygen-glucose deprivation. Ntn1 supplementation or UNC5b knockdown relieved neuronal ferroptosis and neurological impairment with downregulated BACH1 and upregulated p-AMPK, nonetheless, UNC5b knockdown prevented the beneficial role of Ntn1. Both BAY3827 and LMB could reverse the change of ferroptosis caused by Ntn1 where BAY3827 inhibited the effects of Ntn1 to p-AMPK and BACH1 while LMB only inhibited the effect of Ntn1 to BACH1 without p-AMPK, suggesting BACH1 was regulated by AMPK. Co-immunoprecipitation verified that AMPK could physically bind to BACH1. Our results demonstrate UNC5b-evoked neuronal ferroptosis post stroke, and favor that Ntn1 improves post-stroke ferroptosis by its interaction with UNC5b <em>via</em> the AMPK-BACH1 pathway.</div></div>","PeriodicalId":12004,"journal":{"name":"European journal of pharmacology","volume":"998 ","pages":"Article 177507"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European journal of pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014299925002614","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Ferroptosis contributes to neuronal destruction after ischemic stroke which may be improved by inhibiting BTB domain and CNC homolog 1 (BACH1), a recently recognized ferroptosis facilitator. Axon guidance molecule netrin-1 (Ntn1) functions in neuroprotection against ischemic insult by engaging into its receptor of uncoordinated-5 homolog B (UNC5b) via adenosine 5‘-monophosphate-activated protein kinase (AMPK), which potentially binds to BACH1. Whether Ntn1/UNC5b regulates post-stroke ferroptosis through AMPK-BACH1 pathway remains unclear. Ntn1 supplementation and UNC5b knockdown by siRNA were performed in photo-thrombosis stroke mice and oxygen-glucose deprivation-treated HT22 neurons. AMPK inhibitor BAY3827 and BACH1 activator Leptomycin B (LMB) were administrated. Ferroptosis was determined by ferroptosis-associated proteins (FSP1, GPX4 and ACSL4), Fe2+, malondialdehyde and mitochondrial morphology. BACH1 and p-AMPK/AMPK as well as the interaction between them were examined by Western blot and co-immunoprecipitation. Neuronal ferroptosis and the protein levels of BACH1 and p-AMPK were increased after photo-thrombosis and oxygen-glucose deprivation. Ntn1 supplementation or UNC5b knockdown relieved neuronal ferroptosis and neurological impairment with downregulated BACH1 and upregulated p-AMPK, nonetheless, UNC5b knockdown prevented the beneficial role of Ntn1. Both BAY3827 and LMB could reverse the change of ferroptosis caused by Ntn1 where BAY3827 inhibited the effects of Ntn1 to p-AMPK and BACH1 while LMB only inhibited the effect of Ntn1 to BACH1 without p-AMPK, suggesting BACH1 was regulated by AMPK. Co-immunoprecipitation verified that AMPK could physically bind to BACH1. Our results demonstrate UNC5b-evoked neuronal ferroptosis post stroke, and favor that Ntn1 improves post-stroke ferroptosis by its interaction with UNC5b via the AMPK-BACH1 pathway.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过 AMPK-BACH1 通路,Netrin-1 与 UNC5b 结合可改善中风后神经元的铁突变性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.00
自引率
0.00%
发文量
572
审稿时长
34 days
期刊介绍: The European Journal of Pharmacology publishes research papers covering all aspects of experimental pharmacology with focus on the mechanism of action of structurally identified compounds affecting biological systems. The scope includes: Behavioural pharmacology Neuropharmacology and analgesia Cardiovascular pharmacology Pulmonary, gastrointestinal and urogenital pharmacology Endocrine pharmacology Immunopharmacology and inflammation Molecular and cellular pharmacology Regenerative pharmacology Biologicals and biotherapeutics Translational pharmacology Nutriceutical pharmacology.
期刊最新文献
Netrin-1 binding to UNC5b improves post-stroke neuronal ferroptosis via AMPK-BACH1 pathway AI in action: Changes to student perceptions when using generative artificial intelligence for the creation of a multimedia project-based assessment. Royal Jelly Acid Alleviates Diet-Induced Hyperlipidemia through Regulation of Oxidative Stress and Tryptophan Metabolism. Editorial Board Timosaponin AⅢ inhibits ectopic lipid deposition and enhances the browning of white adipose tissue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1