Link between gut damage and neurotoxicity with gender differences in zebrafish: Dibutyl phthalate-driven microbiota dysbiosis as a possible major cause

IF 8.2 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Science of the Total Environment Pub Date : 2025-03-15 DOI:10.1016/j.scitotenv.2025.179102
Yue Tao , Xiaodong Yi , Xinyi Zhou , Jianhua Qu , Tuyiringire Diogene , Aoxue Wang , Ying Zhang
{"title":"Link between gut damage and neurotoxicity with gender differences in zebrafish: Dibutyl phthalate-driven microbiota dysbiosis as a possible major cause","authors":"Yue Tao ,&nbsp;Xiaodong Yi ,&nbsp;Xinyi Zhou ,&nbsp;Jianhua Qu ,&nbsp;Tuyiringire Diogene ,&nbsp;Aoxue Wang ,&nbsp;Ying Zhang","doi":"10.1016/j.scitotenv.2025.179102","DOIUrl":null,"url":null,"abstract":"<div><div>Among plasticizers, dibutyl phthalate (DBP) is widely used in in industry, posing significant health risks to aquatic organisms. In this study, adult male and female zebrafish were exposed to 0 and 30 μg/L DBP for 15 days. Behavioral monitoring, immunofluorescence, protein immunoblotting, and high-throughput sequencing were used to investigate the critical role of the gut microbiome in DBP-induced dysfunction of the zebrafish gut-brain axis. The results showed pronounced, sex-specific toxic effects of acute DBP exposure in adult zebrafish, with males experiencing more severe neurological damage, while females exhibited greater intestinal damage. DBP exposure caused marked anxiety behaviors in males and significant weight loss in females. Males showed reduced neuronal expression, while females exhibited increased intestinal permeability and lower levels of the tight junction protein (ZO-1). The <em>Firmicutes/Bacteroidota</em> (F/B) ratio decreased, indicating severe gut microbiota dysbiosis. Changes in the gut and fecal microbiota composition, along with PICRUSt2 functional predictions, suggest that female zebrafish experienced more severe metabolic disturbances than males. Analysis of key gene expression in the brain-derived neurotrophic factor (<em>bdnf</em>) pathway revealed that changes in the abundance of tryptophan-metabolizing bacteria in the gut may explain the sex-specific effects of DBP on neurotransmitter serotonin levels in the brain, which influence the gut-brain axis in zebrafish. This study contributes to the understanding of toxic effects of DBP on aquatic organisms and provides strong evidence for assessing its environmental risks.</div></div>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":"972 ","pages":"Article 179102"},"PeriodicalIF":8.2000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0048969725007375","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Among plasticizers, dibutyl phthalate (DBP) is widely used in in industry, posing significant health risks to aquatic organisms. In this study, adult male and female zebrafish were exposed to 0 and 30 μg/L DBP for 15 days. Behavioral monitoring, immunofluorescence, protein immunoblotting, and high-throughput sequencing were used to investigate the critical role of the gut microbiome in DBP-induced dysfunction of the zebrafish gut-brain axis. The results showed pronounced, sex-specific toxic effects of acute DBP exposure in adult zebrafish, with males experiencing more severe neurological damage, while females exhibited greater intestinal damage. DBP exposure caused marked anxiety behaviors in males and significant weight loss in females. Males showed reduced neuronal expression, while females exhibited increased intestinal permeability and lower levels of the tight junction protein (ZO-1). The Firmicutes/Bacteroidota (F/B) ratio decreased, indicating severe gut microbiota dysbiosis. Changes in the gut and fecal microbiota composition, along with PICRUSt2 functional predictions, suggest that female zebrafish experienced more severe metabolic disturbances than males. Analysis of key gene expression in the brain-derived neurotrophic factor (bdnf) pathway revealed that changes in the abundance of tryptophan-metabolizing bacteria in the gut may explain the sex-specific effects of DBP on neurotransmitter serotonin levels in the brain, which influence the gut-brain axis in zebrafish. This study contributes to the understanding of toxic effects of DBP on aquatic organisms and provides strong evidence for assessing its environmental risks.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Science of the Total Environment
Science of the Total Environment 环境科学-环境科学
CiteScore
17.60
自引率
10.20%
发文量
8726
审稿时长
2.4 months
期刊介绍: The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere. The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.
期刊最新文献
Bacterial and DNA contamination of a small freshwater waterway used for drinking water after a large precipitation event Link between gut damage and neurotoxicity with gender differences in zebrafish: Dibutyl phthalate-driven microbiota dysbiosis as a possible major cause The challenges and limitations of vivianite quantification with 2,2′-bipyridine extraction Ecosystem multifunctionality enhancement by short-term nitrogen addition in semi-arid saline–alkaline grassland of northern China Life cycle assessment of UVC-based advanced oxidation processes as quaternary treatments: Clostridium spp. inactivation and comparison with CECs removal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1