Different effects of super-chilling and chilling storage on pork spoilage: Insights from dynamic microbial community changes and metabolic profiles

IF 5 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY International journal of food microbiology Pub Date : 2025-03-12 DOI:10.1016/j.ijfoodmicro.2025.111153
Jingyi Hao , Yuxuan Shi , Chenchen Xu , Jing Bai , Hui Wang , Yan Zhao , Bing Zhao , Shouwei Wang , Aidong Sun , Xiaoling Qiao
{"title":"Different effects of super-chilling and chilling storage on pork spoilage: Insights from dynamic microbial community changes and metabolic profiles","authors":"Jingyi Hao ,&nbsp;Yuxuan Shi ,&nbsp;Chenchen Xu ,&nbsp;Jing Bai ,&nbsp;Hui Wang ,&nbsp;Yan Zhao ,&nbsp;Bing Zhao ,&nbsp;Shouwei Wang ,&nbsp;Aidong Sun ,&nbsp;Xiaoling Qiao","doi":"10.1016/j.ijfoodmicro.2025.111153","DOIUrl":null,"url":null,"abstract":"<div><div>Super-chilling can extend the shelf life of high‐oxygen modified atmosphere packaged (MAP) pork from 14 to 56 days compared to conventional chilling storage. The spoilage of raw pork may result from the growth of microorganisms, which ultimately release undesirable metabolites. To investigate this, the microbial and metabolic characteristics of super-chilled MAP pork were determined using 16S rRNA sequencing and untargeted metabolomics based on UHPLC-MS/MS. Dominant spoilage bacteria identified in super-chilled MAP pork (<em>Leuconostoc</em>, <em>Trueperella</em>, <em>Carnobacterium</em>, and <em>Massilia</em>) differ from those in the chilling MAP pork (<em>Brochothrix</em>, <em>Pseudomonas</em>, and <em>Serratia</em>). Metabolomics analysis shows that the different metabolites (DMs) in the super-chilling group contained more lipids and lipid-like molecules, while the DMs in the chilling group contained more organic acids and derivatives. WGCNA reveals that most metabolites in super-chilled MAP pork are correlated to <em>Leuconostoc</em> and <em>Trueperella</em>. According to the KEGG analysis, twenty-nine metabolic pathways were discovered as potential mechanisms underlying the spoilage of super-chilled MAP pork, encompassing lipid, amino acid, and nucleotide metabolism. Random forest analysis identified 63 critical metabolites as spoilage biomarkers, in which 43 metabolites (containing amino acids, lipids, hypoxanthine, xanthine, and nicotinic acid et al.) and 18 metabolites (containing IMP, lactate, and carbohydrate and their phosphorylated products) may be metabolites and substrates of these spoilage bacteria, respectively. This study provides new insights into the changes in microbial and metabolic characteristics that occur during the spoilage of super-chilled MAP pork.</div></div>","PeriodicalId":14095,"journal":{"name":"International journal of food microbiology","volume":"434 ","pages":"Article 111153"},"PeriodicalIF":5.0000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of food microbiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168160525000984","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Super-chilling can extend the shelf life of high‐oxygen modified atmosphere packaged (MAP) pork from 14 to 56 days compared to conventional chilling storage. The spoilage of raw pork may result from the growth of microorganisms, which ultimately release undesirable metabolites. To investigate this, the microbial and metabolic characteristics of super-chilled MAP pork were determined using 16S rRNA sequencing and untargeted metabolomics based on UHPLC-MS/MS. Dominant spoilage bacteria identified in super-chilled MAP pork (Leuconostoc, Trueperella, Carnobacterium, and Massilia) differ from those in the chilling MAP pork (Brochothrix, Pseudomonas, and Serratia). Metabolomics analysis shows that the different metabolites (DMs) in the super-chilling group contained more lipids and lipid-like molecules, while the DMs in the chilling group contained more organic acids and derivatives. WGCNA reveals that most metabolites in super-chilled MAP pork are correlated to Leuconostoc and Trueperella. According to the KEGG analysis, twenty-nine metabolic pathways were discovered as potential mechanisms underlying the spoilage of super-chilled MAP pork, encompassing lipid, amino acid, and nucleotide metabolism. Random forest analysis identified 63 critical metabolites as spoilage biomarkers, in which 43 metabolites (containing amino acids, lipids, hypoxanthine, xanthine, and nicotinic acid et al.) and 18 metabolites (containing IMP, lactate, and carbohydrate and their phosphorylated products) may be metabolites and substrates of these spoilage bacteria, respectively. This study provides new insights into the changes in microbial and metabolic characteristics that occur during the spoilage of super-chilled MAP pork.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International journal of food microbiology
International journal of food microbiology 工程技术-食品科技
CiteScore
10.40
自引率
5.60%
发文量
322
审稿时长
65 days
期刊介绍: The International Journal of Food Microbiology publishes papers dealing with all aspects of food microbiology. Articles must present information that is novel, has high impact and interest, and is of high scientific quality. They should provide scientific or technological advancement in the specific field of interest of the journal and enhance its strong international reputation. Preliminary or confirmatory results as well as contributions not strictly related to food microbiology will not be considered for publication.
期刊最新文献
Solid-state fermentation through synthetic microbiome: An effective strategy for converting Chinese distillers' grains into functional protein feed Exploring the potential of using pomegranate and mango peel powders as natural food additives targeting safety of white soft cheese Elucidating the biofilm formation process, microstructure and functional gene expression of Listeria monocytogenes in beef juice Enzymatic degradation of Ochratoxin A by a novel bacterium, Microbacterium esteraromaticum ASAG1016 Different effects of super-chilling and chilling storage on pork spoilage: Insights from dynamic microbial community changes and metabolic profiles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1