{"title":"Development of a comprehensive framework for wetland ecosystem assessment and management","authors":"Manob Das , Arijit Das , Suman Singha","doi":"10.1016/j.gsf.2025.102036","DOIUrl":null,"url":null,"abstract":"<div><div>This study focuses on the assessment of ecosystem health (EH), ecosystem services (ES), and ecosystem risk (ER) in East Kolkata Wetland (EKW). A comprehensive framework on the EH, ES and ER has been developed using remote sesning and geo-spatial techniques for the year 2000, 2005, 2010, 2015, and 2020. The study also assessed ecosystem structure and fragmentation using landscape metrics calculated using fragstats, which showed a significant influence of land use and land cover (LULC) changes on the wetland’s ecological integrity. The study revealed that 6.86% of EKW fallen under a very low EH zone, while 20% was categorized as having very high EH. Spatio-temporal analysis of ES indicated that 30% of the area had very low ES value, with only 8% exhibiting very high ES. ER assessment revealed that 7% of the study area was highly ER, while 12% identified within a high ER zone, reflecting frequent LULC changes. The correlation analysis highlighted strong negative relationships between landscape deviation degree (LDD) and EH (−0.971), and between normalized difference water index (NDWI) and normalized difference vegetation index (NDVI) (−0.991). Additionally, landscape metrics such as the number of patches (NP) and the largest patch index (LPI) exhibited significant correlations, emphasizing the impact of fragmentation on EH and resilience. This comprehensive assessment underscores the importance of integrated approaches to monitor and manage wetland ecosystems, particularly in urban areas facing significant environmental stressors. The findings are crucial for informed decision-making and sustainable management of the wetland ecosystems, particularly in the cities of the global south.</div></div>","PeriodicalId":12711,"journal":{"name":"Geoscience frontiers","volume":"16 3","pages":"Article 102036"},"PeriodicalIF":8.5000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscience frontiers","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674987125000362","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study focuses on the assessment of ecosystem health (EH), ecosystem services (ES), and ecosystem risk (ER) in East Kolkata Wetland (EKW). A comprehensive framework on the EH, ES and ER has been developed using remote sesning and geo-spatial techniques for the year 2000, 2005, 2010, 2015, and 2020. The study also assessed ecosystem structure and fragmentation using landscape metrics calculated using fragstats, which showed a significant influence of land use and land cover (LULC) changes on the wetland’s ecological integrity. The study revealed that 6.86% of EKW fallen under a very low EH zone, while 20% was categorized as having very high EH. Spatio-temporal analysis of ES indicated that 30% of the area had very low ES value, with only 8% exhibiting very high ES. ER assessment revealed that 7% of the study area was highly ER, while 12% identified within a high ER zone, reflecting frequent LULC changes. The correlation analysis highlighted strong negative relationships between landscape deviation degree (LDD) and EH (−0.971), and between normalized difference water index (NDWI) and normalized difference vegetation index (NDVI) (−0.991). Additionally, landscape metrics such as the number of patches (NP) and the largest patch index (LPI) exhibited significant correlations, emphasizing the impact of fragmentation on EH and resilience. This comprehensive assessment underscores the importance of integrated approaches to monitor and manage wetland ecosystems, particularly in urban areas facing significant environmental stressors. The findings are crucial for informed decision-making and sustainable management of the wetland ecosystems, particularly in the cities of the global south.
Geoscience frontiersEarth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
17.80
自引率
3.40%
发文量
147
审稿时长
35 days
期刊介绍:
Geoscience Frontiers (GSF) is the Journal of China University of Geosciences (Beijing) and Peking University. It publishes peer-reviewed research articles and reviews in interdisciplinary fields of Earth and Planetary Sciences. GSF covers various research areas including petrology and geochemistry, lithospheric architecture and mantle dynamics, global tectonics, economic geology and fuel exploration, geophysics, stratigraphy and paleontology, environmental and engineering geology, astrogeology, and the nexus of resources-energy-emissions-climate under Sustainable Development Goals. The journal aims to bridge innovative, provocative, and challenging concepts and models in these fields, providing insights on correlations and evolution.