Warming enhances the effects of nitrogen addition on fungal but not on bacterial diversity in an alpine meadow

IF 3 2区 环境科学与生态学 Q2 ECOLOGY Basic and Applied Ecology Pub Date : 2025-03-03 DOI:10.1016/j.baae.2025.02.007
Ling Han , Hasbagan Ganjurjav , Guozheng Hu , Jianshuang Wu , Xuexia Wang , Yulong Yan , Yilun Hu , Guoxu Ji , Luobu Danjiu , Qingzhu Gao
{"title":"Warming enhances the effects of nitrogen addition on fungal but not on bacterial diversity in an alpine meadow","authors":"Ling Han ,&nbsp;Hasbagan Ganjurjav ,&nbsp;Guozheng Hu ,&nbsp;Jianshuang Wu ,&nbsp;Xuexia Wang ,&nbsp;Yulong Yan ,&nbsp;Yilun Hu ,&nbsp;Guoxu Ji ,&nbsp;Luobu Danjiu ,&nbsp;Qingzhu Gao","doi":"10.1016/j.baae.2025.02.007","DOIUrl":null,"url":null,"abstract":"<div><div>Warming and nitrogen (N) deposition significantly affect soil microbial community characteristics. However, the responses of bacterial and fungal diversity to warming and N deposition, as well as the dominant influencing factors, remain unclear, especially in N-limited and low-temperature ecosystems. We employed a field-controlled experimental design with warming (W, using open-top chambers at +2 °C), N addition (N, 40 kg N ha<sup>−1</sup> yr<sup>−1</sup> NH<sub>4</sub>NO<sub>3</sub>), and their interaction (NW) to simulate their effects on soil microbial community composition and diversity, as well as plant community characteristics. Our results showed a significant decrease in bacterial richness (Chao1) under warming. N addition had a positive effect on bacterial richness (Chao1) but a negative effect on fungal diversity (Shannon and Chao1), which led to a considerable shift in bacterial community composition. Conversely, N addition combined with warming significantly increased fungal diversity but decreased bacterial diversity compared with N addition alone. Bacterial diversity was positively influenced by soil moisture but negatively affected by soil temperature and forb dominance. Fungal diversity was negatively influenced by soil NH<sub>4</sub><sup>+</sup>-N content and belowground biomass. Additionally, our results showed a synergistic effect on fungi owing to changes in plant community composition, while an antagonistic effect on bacterial diversity was observed owing to reduced water and nutrient availability under warming plus N addition. Our findings underscore the importance of considering plant productivity and diversity when examining microbial diversity responses to warming and N addition in alpine meadows.</div></div>","PeriodicalId":8708,"journal":{"name":"Basic and Applied Ecology","volume":"84 ","pages":"Pages 110-120"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basic and Applied Ecology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1439179125000210","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Warming and nitrogen (N) deposition significantly affect soil microbial community characteristics. However, the responses of bacterial and fungal diversity to warming and N deposition, as well as the dominant influencing factors, remain unclear, especially in N-limited and low-temperature ecosystems. We employed a field-controlled experimental design with warming (W, using open-top chambers at +2 °C), N addition (N, 40 kg N ha−1 yr−1 NH4NO3), and their interaction (NW) to simulate their effects on soil microbial community composition and diversity, as well as plant community characteristics. Our results showed a significant decrease in bacterial richness (Chao1) under warming. N addition had a positive effect on bacterial richness (Chao1) but a negative effect on fungal diversity (Shannon and Chao1), which led to a considerable shift in bacterial community composition. Conversely, N addition combined with warming significantly increased fungal diversity but decreased bacterial diversity compared with N addition alone. Bacterial diversity was positively influenced by soil moisture but negatively affected by soil temperature and forb dominance. Fungal diversity was negatively influenced by soil NH4+-N content and belowground biomass. Additionally, our results showed a synergistic effect on fungi owing to changes in plant community composition, while an antagonistic effect on bacterial diversity was observed owing to reduced water and nutrient availability under warming plus N addition. Our findings underscore the importance of considering plant productivity and diversity when examining microbial diversity responses to warming and N addition in alpine meadows.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Basic and Applied Ecology
Basic and Applied Ecology 环境科学-生态学
CiteScore
6.90
自引率
5.30%
发文量
103
审稿时长
10.6 weeks
期刊介绍: Basic and Applied Ecology provides a forum in which significant advances and ideas can be rapidly communicated to a wide audience. Basic and Applied Ecology publishes original contributions, perspectives and reviews from all areas of basic and applied ecology. Ecologists from all countries are invited to publish ecological research of international interest in its pages. There is no bias with regard to taxon or geographical area.
期刊最新文献
Molecular dietary analysis reveals plasticity in habitat requirements of a clutter specialist bat Crop gains induced by diversification exceed crop losses to diseases and weeds in a low-input rice cultivation system Warming enhances the effects of nitrogen addition on fungal but not on bacterial diversity in an alpine meadow Unpacking the fitness consequences of a warmer spring on an overwintering butterfly Linking nutrient dynamics and phenology in Lupinus polyphyllus to identify the right timing for population control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1