Tailoring of crystal size and significant enhancement of physical property, ductility and toughness in in-situ nano kraft lignin/nano-fibrillated cellulose biocomposite
{"title":"Tailoring of crystal size and significant enhancement of physical property, ductility and toughness in in-situ nano kraft lignin/nano-fibrillated cellulose biocomposite","authors":"Majed Parvan , Vijay Singh Parihar , Minna Kellomäki , Mrityunjoy Mahato , Rama Layek","doi":"10.1016/j.compositesb.2025.112400","DOIUrl":null,"url":null,"abstract":"<div><div>An aqueous dispersion of nano-fibrillated cellulose (NFC) biocomposite solution with colloidal kraft lignin (CKL) particles ranging from 0 to 5 wt% was produced by preparing in-situ CKL in the aqueous dispersion of NFC. The CKL/NFC dispersions were vacuum filtered to remove excess water and then dried at 70 °C for 5 min using compression molding to obtain free-standing CKL/NFC composite films. The CKL particles remained homogeneously dispersed on the NFC fibril surfaces, forming hydrogen bonds with the hydroxyl groups of the NFC chain, which led to in-situ CKL-directed crystallization as well as nano-reinforcement. X-ray diffraction studies confirmed that the crystal size of the NFC molecules increased with the integration of in-situ CKL particles. Consequently, the CKL/NFC composite films demonstrated significant enhancement of tensile strength, elongation at break, and toughness. Additionally, CKL/NFC composite films exhibited outstanding thermal stability, UV-shielding, and antioxidant properties. These findings suggest that CKL/NFC biocomposite films could be suitable for structural and engineering composite materials, consumer products, and packaging applications.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"298 ","pages":"Article 112400"},"PeriodicalIF":12.7000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836825002926","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
An aqueous dispersion of nano-fibrillated cellulose (NFC) biocomposite solution with colloidal kraft lignin (CKL) particles ranging from 0 to 5 wt% was produced by preparing in-situ CKL in the aqueous dispersion of NFC. The CKL/NFC dispersions were vacuum filtered to remove excess water and then dried at 70 °C for 5 min using compression molding to obtain free-standing CKL/NFC composite films. The CKL particles remained homogeneously dispersed on the NFC fibril surfaces, forming hydrogen bonds with the hydroxyl groups of the NFC chain, which led to in-situ CKL-directed crystallization as well as nano-reinforcement. X-ray diffraction studies confirmed that the crystal size of the NFC molecules increased with the integration of in-situ CKL particles. Consequently, the CKL/NFC composite films demonstrated significant enhancement of tensile strength, elongation at break, and toughness. Additionally, CKL/NFC composite films exhibited outstanding thermal stability, UV-shielding, and antioxidant properties. These findings suggest that CKL/NFC biocomposite films could be suitable for structural and engineering composite materials, consumer products, and packaging applications.
期刊介绍:
Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development.
The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.