Nickel and strontium-doped zinc oxide: A promising sorbent for methyl orange and methylene blue decolorization

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Journal of Physics and Chemistry of Solids Pub Date : 2025-03-12 DOI:10.1016/j.jpcs.2025.112694
B. Mohanavel , K. Kesavan , N. Siva Jyothi , R. Shalini
{"title":"Nickel and strontium-doped zinc oxide: A promising sorbent for methyl orange and methylene blue decolorization","authors":"B. Mohanavel ,&nbsp;K. Kesavan ,&nbsp;N. Siva Jyothi ,&nbsp;R. Shalini","doi":"10.1016/j.jpcs.2025.112694","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the enhanced photocatalytic activity of strontium (Sr) and nickel (Ni) co-doped zinc oxide (ZnO) films, synthesized using the spray pyrolysis method. By incorporating Sr and Ni into the ZnO matrix, the structural, optical, and photocatalytic properties of the films were systematically evaluated. Scanning electron microscopy and X-ray diffraction analyses confirmed the successful doping and uniform morphology of the films. The optical properties, accessed via UV–Vis spectroscopy, indicated a significant reduction in band gap energy due to the co-doping, which enhanced light absorption. Photocatalytic experiments demonstrated that the Sr, Ni co-doped ZnO films exhibited superior degradation rates for organic pollutants (Methyl orange (MO) - anionic, and Methylene blue (MB) – cationic) under sun light irradiation compared to undoped ZnO. These findings suggest that co-doping with Sr and Ni is a promising approach to enhance the photocatalytic performance of ZnO films, making them suitable for environmental remediation applications.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"202 ","pages":"Article 112694"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369725001453","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the enhanced photocatalytic activity of strontium (Sr) and nickel (Ni) co-doped zinc oxide (ZnO) films, synthesized using the spray pyrolysis method. By incorporating Sr and Ni into the ZnO matrix, the structural, optical, and photocatalytic properties of the films were systematically evaluated. Scanning electron microscopy and X-ray diffraction analyses confirmed the successful doping and uniform morphology of the films. The optical properties, accessed via UV–Vis spectroscopy, indicated a significant reduction in band gap energy due to the co-doping, which enhanced light absorption. Photocatalytic experiments demonstrated that the Sr, Ni co-doped ZnO films exhibited superior degradation rates for organic pollutants (Methyl orange (MO) - anionic, and Methylene blue (MB) – cationic) under sun light irradiation compared to undoped ZnO. These findings suggest that co-doping with Sr and Ni is a promising approach to enhance the photocatalytic performance of ZnO films, making them suitable for environmental remediation applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
本研究探讨了利用喷雾热解方法合成的锶和镍共掺氧化锌(ZnO)薄膜的增强光催化活性。通过在氧化锌基体中加入锶和镍,系统地评估了薄膜的结构、光学和光催化特性。扫描电子显微镜和 X 射线衍射分析证实了薄膜的成功掺杂和均匀形貌。通过紫外可见光谱法获得的光学特性表明,由于共掺杂,带隙能显著降低,从而增强了光吸收。光催化实验表明,在太阳光照射下,与未掺杂的氧化锌相比,硒、镍共掺杂氧化锌薄膜对有机污染物(阴离子型甲基橙(MO)和阳离子型甲基蓝(MB))的降解率更高。这些研究结果表明,掺杂锶和镍是提高氧化锌薄膜光催化性能的一种可行方法,使其适用于环境修复应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Physics and Chemistry of Solids
Journal of Physics and Chemistry of Solids 工程技术-化学综合
CiteScore
7.80
自引率
2.50%
发文量
605
审稿时长
40 days
期刊介绍: The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems. Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal: Low-dimensional systems Exotic states of quantum electron matter including topological phases Energy conversion and storage Interfaces, nanoparticles and catalysts.
期刊最新文献
First-principles calculations to investigate structural, mechanical, electronic, transport and thermoelectric properties of XTiPd(X=Si, Ge, Sn, Pb) Half Heusler alloys Radiation-induced photoluminescence enhancement of zinc oxide and zinc oxide- polyvinyl alcohol nanocomposite: A green and controllable approach for tailor-made optoelectronics Nanoarchitectonics with highly porous, thick, stable anodic films on 304 stainless steel for high- performance supercapacitors Na2ZnH6: A 53K conventional superconductor near ambient pressure Co-sputtering deposition of HfO2 thin films: Insights into Cu and Ag doping effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1