The photovoltaic Dyson sphere

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS Solar Energy Materials and Solar Cells Pub Date : 2025-03-15 DOI:10.1016/j.solmat.2025.113589
Ian Marius Peters
{"title":"The photovoltaic Dyson sphere","authors":"Ian Marius Peters","doi":"10.1016/j.solmat.2025.113589","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the concept of a photovoltaic Dyson sphere, a megastructure designed to capture and convert a star's energy for use in advanced technological applications. The temperature of a Dyson sphere composed of both blackbody and grey body materials is investigated. For efficient photovoltaic conversion, the semiconductor sphere must be coated with a black material to regulate temperature, ensuring it remains low enough for photovoltaic generation. The environmental impact on planetary conditions is also analyzed, revealing that only a Dyson sphere with an extension beyond Earth's orbit could allow life to persist on Earth while maintaining suitable temperatures for photovoltaic efficiency. Such a structure would still increase Earth’s temperature, necessitating planetary temperature control systems—an issue that parallels the challenges of mitigating global warming. Considering material availability in the solar system, it was found that a partial Dyson sphere at 2.13 AU, using 1.3 × 10<sup>23</sup> kg of silicon, could generate 4 % of the Sun’s power, yielding 15.6 YW of electricity while increasing temperature on Earth by less than 3K.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"286 ","pages":"Article 113589"},"PeriodicalIF":6.3000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024825001904","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the concept of a photovoltaic Dyson sphere, a megastructure designed to capture and convert a star's energy for use in advanced technological applications. The temperature of a Dyson sphere composed of both blackbody and grey body materials is investigated. For efficient photovoltaic conversion, the semiconductor sphere must be coated with a black material to regulate temperature, ensuring it remains low enough for photovoltaic generation. The environmental impact on planetary conditions is also analyzed, revealing that only a Dyson sphere with an extension beyond Earth's orbit could allow life to persist on Earth while maintaining suitable temperatures for photovoltaic efficiency. Such a structure would still increase Earth’s temperature, necessitating planetary temperature control systems—an issue that parallels the challenges of mitigating global warming. Considering material availability in the solar system, it was found that a partial Dyson sphere at 2.13 AU, using 1.3 × 1023 kg of silicon, could generate 4 % of the Sun’s power, yielding 15.6 YW of electricity while increasing temperature on Earth by less than 3K.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光伏戴森球
这项研究探索了光伏戴森球的概念,这是一个巨型结构,旨在捕获和转换恒星的能量,用于先进的技术应用。研究了由黑体和灰体材料组成的戴森球的温度。为了高效的光电转换,半导体球体必须涂上一层黑色材料来调节温度,以确保它保持足够低的温度以进行光电发电。还分析了环境对行星条件的影响,揭示了只有延伸到地球轨道之外的戴森球才能让生命在地球上持续存在,同时保持适合光伏效率的温度。这样的结构仍然会增加地球的温度,需要行星温度控制系统——这个问题与减缓全球变暖的挑战是平行的。考虑到太阳系中材料的可用性,发现一个2.13 AU的部分戴森球,使用1.3 × 1023 kg的硅,可以产生4%的太阳能量,产生15.6 YW的电力,而地球上的温度升高不到3K。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
期刊最新文献
Comprehensive VIPV energy yield and MPPT evaluation under realistic dynamic shading in urban environments Directionally structured oxalic acid dihydrate-glutaric acid/expanded graphite-graphite sheet composites with ultrahigh thermal conductivity for solar thermal storage Machine learning based prognostic analysis of a hybrid solar still coupled with evacuated tube collector and stearic acid: A comprehensive 4-E assessment Ultra-narrow strip-shaped silicon solar cells for semi-transparent PV modules: Interplay among cut edges, cell structure, strip dimensions, and partial edge passivation Corrosion behavior of laser-cladding nickel-based coating in high-temperature molten chloride salts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1