Cooling by a Dispersed Flow Performing a Phase Transition of a Modifies Surface

IF 1.1 4区 物理与天体物理 Q4 PHYSICS, APPLIED Technical Physics Pub Date : 2025-03-15 DOI:10.1134/S1063784224701019
V. S. Shteling, A. T. Komov, P. P. Shcherbakov, A. V. Zakharenkov, A. P. Sliva
{"title":"Cooling by a Dispersed Flow Performing a Phase Transition of a Modifies Surface","authors":"V. S. Shteling,&nbsp;A. T. Komov,&nbsp;P. P. Shcherbakov,&nbsp;A. V. Zakharenkov,&nbsp;A. P. Sliva","doi":"10.1134/S1063784224701019","DOIUrl":null,"url":null,"abstract":"<p>Cooling of a modified surface by a dispersed flow of distilled water has been investigated experimentally, and the results have been compared with cooling of an unmodified surface. The modification of the heat-exchange surface of the copper working region has been performed by processing with a high-energy electron beam; as a result, a unique microporous surface has been obtained. The macrograph of the modified surface has been obtained and profiles have been measured using a profile meter. Four series of experiments for various heat carrier parameters have been performed for the modified and unmodified surfaces. The excess pressure of the heat carrier at the sprayer input was (4–14) × 10<sup>5</sup> Pa, the mass flow rate of the heat carrier (distilled water) was (2.1–4.3) × 10<sup>–3</sup> kg/s, and the spraying density varied in the limits (3.0–6.1) kg/(m<sup>2</sup> s). The variations of the heat flux densities for these surfaces were compared. The convective component and the component of the phase transition of the removed heat flow during cooling the surface by a dispersed flow were estimated, and the conclusion was made concerning the key contribution of the phase transition to this process was made. The amount of evaporated liquid for the considered cooling modes were compared, and the dependence of this quantity on the heat flux density was obtained. The maximal heat flux density during the cooling of the surface by a dispersed flow attained 8.5 MW/m<sup>2</sup>.</p>","PeriodicalId":783,"journal":{"name":"Technical Physics","volume":"69 11","pages":"2678 - 2683"},"PeriodicalIF":1.1000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063784224701019","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Cooling of a modified surface by a dispersed flow of distilled water has been investigated experimentally, and the results have been compared with cooling of an unmodified surface. The modification of the heat-exchange surface of the copper working region has been performed by processing with a high-energy electron beam; as a result, a unique microporous surface has been obtained. The macrograph of the modified surface has been obtained and profiles have been measured using a profile meter. Four series of experiments for various heat carrier parameters have been performed for the modified and unmodified surfaces. The excess pressure of the heat carrier at the sprayer input was (4–14) × 105 Pa, the mass flow rate of the heat carrier (distilled water) was (2.1–4.3) × 10–3 kg/s, and the spraying density varied in the limits (3.0–6.1) kg/(m2 s). The variations of the heat flux densities for these surfaces were compared. The convective component and the component of the phase transition of the removed heat flow during cooling the surface by a dispersed flow were estimated, and the conclusion was made concerning the key contribution of the phase transition to this process was made. The amount of evaporated liquid for the considered cooling modes were compared, and the dependence of this quantity on the heat flux density was obtained. The maximal heat flux density during the cooling of the surface by a dispersed flow attained 8.5 MW/m2.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Technical Physics
Technical Physics 物理-物理:应用
CiteScore
1.30
自引率
14.30%
发文量
139
审稿时长
3-6 weeks
期刊介绍: Technical Physics is a journal that contains practical information on all aspects of applied physics, especially instrumentation and measurement techniques. Particular emphasis is put on plasma physics and related fields such as studies of charged particles in electromagnetic fields, synchrotron radiation, electron and ion beams, gas lasers and discharges. Other journal topics are the properties of condensed matter, including semiconductors, superconductors, gases, liquids, and different materials.
期刊最新文献
The Method of Adjusting the Amplitude–Frequency Characteristics of Filters The Development of a Methodological Approach to Correcting Supply Voltage Quality in an Electrical Complex Nonuniformity of Temperature Distributions of Flue Gas Temperature over the Depth of a Tube Furnace Optimization of the Characteristics of Graphene Microribbon-Based Antenna Arrays Cooling by a Dispersed Flow Performing a Phase Transition of a Modifies Surface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1