Bacillus subtilis surface display technology: applications in bioprocessing and sustainable manufacturing

IF 6.1 1区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Biotechnology for Biofuels Pub Date : 2025-03-15 DOI:10.1186/s13068-025-02635-4
Howra Bahrulolum, Gholamreza Ahmadian
{"title":"Bacillus subtilis surface display technology: applications in bioprocessing and sustainable manufacturing","authors":"Howra Bahrulolum,&nbsp;Gholamreza Ahmadian","doi":"10.1186/s13068-025-02635-4","DOIUrl":null,"url":null,"abstract":"<div><p>The growing demand for sustainable and eco-friendly alternatives in bioprocessing, healthcare, and manufacturing has stimulated significant interest in <i>Bacillus subtilis</i> surface display technology. This innovative platform, leveraging both spore and vegetative cell forms, provides exceptional versatility for a wide spectrum of applications, spanning from green technologies to advanced biomedical innovations. The robustness of spores and the metabolic activity of vegetative cells enable efficient enzyme immobilization, biocatalysis, and biosensor development, facilitating bioremediation, pollutant degradation, and renewable energy generation. Additionally, <i>B. subtilis</i> surface display systems have demonstrated remarkable potential in vaccine development and drug delivery, offering a cost-effective, scalable, and environmentally sustainable alternative to traditional methods. These systems can effectively present antigens or therapeutic molecules, enabling targeted drug delivery and robust immune responses. This review explores recent advancements, challenges, and opportunities in harnessing <i>B. subtilis</i> surface display technology for sustainable biomanufacturing, green innovations, and transformative biomedical applications, emphasizing its role in addressing pressing global challenges in environmental sustainability and healthcare.</p></div>","PeriodicalId":494,"journal":{"name":"Biotechnology for Biofuels","volume":"18 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://biotechnologyforbiofuels.biomedcentral.com/counter/pdf/10.1186/s13068-025-02635-4","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology for Biofuels","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1186/s13068-025-02635-4","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The growing demand for sustainable and eco-friendly alternatives in bioprocessing, healthcare, and manufacturing has stimulated significant interest in Bacillus subtilis surface display technology. This innovative platform, leveraging both spore and vegetative cell forms, provides exceptional versatility for a wide spectrum of applications, spanning from green technologies to advanced biomedical innovations. The robustness of spores and the metabolic activity of vegetative cells enable efficient enzyme immobilization, biocatalysis, and biosensor development, facilitating bioremediation, pollutant degradation, and renewable energy generation. Additionally, B. subtilis surface display systems have demonstrated remarkable potential in vaccine development and drug delivery, offering a cost-effective, scalable, and environmentally sustainable alternative to traditional methods. These systems can effectively present antigens or therapeutic molecules, enabling targeted drug delivery and robust immune responses. This review explores recent advancements, challenges, and opportunities in harnessing B. subtilis surface display technology for sustainable biomanufacturing, green innovations, and transformative biomedical applications, emphasizing its role in addressing pressing global challenges in environmental sustainability and healthcare.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biotechnology for Biofuels
Biotechnology for Biofuels 工程技术-生物工程与应用微生物
自引率
0.00%
发文量
0
审稿时长
2.7 months
期刊介绍: Biotechnology for Biofuels is an open access peer-reviewed journal featuring high-quality studies describing technological and operational advances in the production of biofuels, chemicals and other bioproducts. The journal emphasizes understanding and advancing the application of biotechnology and synergistic operations to improve plants and biological conversion systems for the biological production of these products from biomass, intermediates derived from biomass, or CO2, as well as upstream or downstream operations that are integral to biological conversion of biomass. Biotechnology for Biofuels focuses on the following areas: • Development of terrestrial plant feedstocks • Development of algal feedstocks • Biomass pretreatment, fractionation and extraction for biological conversion • Enzyme engineering, production and analysis • Bacterial genetics, physiology and metabolic engineering • Fungal/yeast genetics, physiology and metabolic engineering • Fermentation, biocatalytic conversion and reaction dynamics • Biological production of chemicals and bioproducts from biomass • Anaerobic digestion, biohydrogen and bioelectricity • Bioprocess integration, techno-economic analysis, modelling and policy • Life cycle assessment and environmental impact analysis
期刊最新文献
Bacillus subtilis surface display technology: applications in bioprocessing and sustainable manufacturing Benchmarking commercially available value-added fractions with potential for production via microalgae-based biorefineries: is it worth it? Discovery of the antifungal compound ilicicolin K through genetic activation of the ilicicolin biosynthetic pathway in Trichoderma reesei Correction: Shewanella oneidensis and Methanosarcina barkerii augmentation and conductive material effects on long‑term anaerobic digestion performance Cinnamyl alcohol dehydrogenase downregulation in poplar wood increases saccharification after dilute acid pretreatment: a key role for lignin revealed by a multimodal investigation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1