{"title":"Bacillus subtilis surface display technology: applications in bioprocessing and sustainable manufacturing","authors":"Howra Bahrulolum, Gholamreza Ahmadian","doi":"10.1186/s13068-025-02635-4","DOIUrl":null,"url":null,"abstract":"<div><p>The growing demand for sustainable and eco-friendly alternatives in bioprocessing, healthcare, and manufacturing has stimulated significant interest in <i>Bacillus subtilis</i> surface display technology. This innovative platform, leveraging both spore and vegetative cell forms, provides exceptional versatility for a wide spectrum of applications, spanning from green technologies to advanced biomedical innovations. The robustness of spores and the metabolic activity of vegetative cells enable efficient enzyme immobilization, biocatalysis, and biosensor development, facilitating bioremediation, pollutant degradation, and renewable energy generation. Additionally, <i>B. subtilis</i> surface display systems have demonstrated remarkable potential in vaccine development and drug delivery, offering a cost-effective, scalable, and environmentally sustainable alternative to traditional methods. These systems can effectively present antigens or therapeutic molecules, enabling targeted drug delivery and robust immune responses. This review explores recent advancements, challenges, and opportunities in harnessing <i>B. subtilis</i> surface display technology for sustainable biomanufacturing, green innovations, and transformative biomedical applications, emphasizing its role in addressing pressing global challenges in environmental sustainability and healthcare.</p></div>","PeriodicalId":494,"journal":{"name":"Biotechnology for Biofuels","volume":"18 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://biotechnologyforbiofuels.biomedcentral.com/counter/pdf/10.1186/s13068-025-02635-4","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology for Biofuels","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1186/s13068-025-02635-4","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The growing demand for sustainable and eco-friendly alternatives in bioprocessing, healthcare, and manufacturing has stimulated significant interest in Bacillus subtilis surface display technology. This innovative platform, leveraging both spore and vegetative cell forms, provides exceptional versatility for a wide spectrum of applications, spanning from green technologies to advanced biomedical innovations. The robustness of spores and the metabolic activity of vegetative cells enable efficient enzyme immobilization, biocatalysis, and biosensor development, facilitating bioremediation, pollutant degradation, and renewable energy generation. Additionally, B. subtilis surface display systems have demonstrated remarkable potential in vaccine development and drug delivery, offering a cost-effective, scalable, and environmentally sustainable alternative to traditional methods. These systems can effectively present antigens or therapeutic molecules, enabling targeted drug delivery and robust immune responses. This review explores recent advancements, challenges, and opportunities in harnessing B. subtilis surface display technology for sustainable biomanufacturing, green innovations, and transformative biomedical applications, emphasizing its role in addressing pressing global challenges in environmental sustainability and healthcare.
期刊介绍:
Biotechnology for Biofuels is an open access peer-reviewed journal featuring high-quality studies describing technological and operational advances in the production of biofuels, chemicals and other bioproducts. The journal emphasizes understanding and advancing the application of biotechnology and synergistic operations to improve plants and biological conversion systems for the biological production of these products from biomass, intermediates derived from biomass, or CO2, as well as upstream or downstream operations that are integral to biological conversion of biomass.
Biotechnology for Biofuels focuses on the following areas:
• Development of terrestrial plant feedstocks
• Development of algal feedstocks
• Biomass pretreatment, fractionation and extraction for biological conversion
• Enzyme engineering, production and analysis
• Bacterial genetics, physiology and metabolic engineering
• Fungal/yeast genetics, physiology and metabolic engineering
• Fermentation, biocatalytic conversion and reaction dynamics
• Biological production of chemicals and bioproducts from biomass
• Anaerobic digestion, biohydrogen and bioelectricity
• Bioprocess integration, techno-economic analysis, modelling and policy
• Life cycle assessment and environmental impact analysis