Sachin A. Gharat, Vaijayanti A. Tamhane, Ashok P. Giri, Asaph Aharoni
{"title":"Navigating the challenges of engineering composite specialized metabolite pathways in plants","authors":"Sachin A. Gharat, Vaijayanti A. Tamhane, Ashok P. Giri, Asaph Aharoni","doi":"10.1111/tpj.70100","DOIUrl":null,"url":null,"abstract":"<p>Plants are a valuable source of diverse specialized metabolites with numerous applications. However, these compounds are often produced in limited quantities, particularly under unfavorable ecological conditions. To achieve sufficient levels of target metabolites, alternative strategies such as pathway engineering in heterologous systems like microbes (e.g., bacteria and fungi) or cell-free systems can be employed. Another approach is plant engineering, which aims to either enhance the native production in the original plant or reconstruct the target pathway in a model plant system. Although increasing metabolite production in the native plant is a promising strategy, these source plants are often exotic and pose significant challenges for genetic manipulation. Effective pathway engineering requires comprehensive prior knowledge of the genes and enzymes involved, as well as the precursor, intermediate, branching, and final metabolites. Thus, a thorough elucidation of the biosynthetic pathway is closely linked to successful metabolic engineering in host or model systems. In this review, we highlight recent advances in strategies for biosynthetic pathway elucidation and metabolic engineering. We focus on efforts to engineer complex, multi-step pathways that require the expression of at least eight genes for transient and three genes for stable transformation. Reports on the engineering of complex pathways in stably transformed plants remain relatively scarce. We discuss the major hurdles in pathway elucidation and strategies for overcoming them, followed by an overview of achievements, challenges, and solutions in pathway reconstitution through metabolic engineering. Recent advances including computer-based predictions offer valuable platforms for the sustainable production of specialized metabolites in plants.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":"121 6","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/tpj.70100","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Journal","FirstCategoryId":"2","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/tpj.70100","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Plants are a valuable source of diverse specialized metabolites with numerous applications. However, these compounds are often produced in limited quantities, particularly under unfavorable ecological conditions. To achieve sufficient levels of target metabolites, alternative strategies such as pathway engineering in heterologous systems like microbes (e.g., bacteria and fungi) or cell-free systems can be employed. Another approach is plant engineering, which aims to either enhance the native production in the original plant or reconstruct the target pathway in a model plant system. Although increasing metabolite production in the native plant is a promising strategy, these source plants are often exotic and pose significant challenges for genetic manipulation. Effective pathway engineering requires comprehensive prior knowledge of the genes and enzymes involved, as well as the precursor, intermediate, branching, and final metabolites. Thus, a thorough elucidation of the biosynthetic pathway is closely linked to successful metabolic engineering in host or model systems. In this review, we highlight recent advances in strategies for biosynthetic pathway elucidation and metabolic engineering. We focus on efforts to engineer complex, multi-step pathways that require the expression of at least eight genes for transient and three genes for stable transformation. Reports on the engineering of complex pathways in stably transformed plants remain relatively scarce. We discuss the major hurdles in pathway elucidation and strategies for overcoming them, followed by an overview of achievements, challenges, and solutions in pathway reconstitution through metabolic engineering. Recent advances including computer-based predictions offer valuable platforms for the sustainable production of specialized metabolites in plants.
期刊介绍:
Publishing the best original research papers in all key areas of modern plant biology from the world"s leading laboratories, The Plant Journal provides a dynamic forum for this ever growing international research community.
Plant science research is now at the forefront of research in the biological sciences, with breakthroughs in our understanding of fundamental processes in plants matching those in other organisms. The impact of molecular genetics and the availability of model and crop species can be seen in all aspects of plant biology. For publication in The Plant Journal the research must provide a highly significant new contribution to our understanding of plants and be of general interest to the plant science community.