{"title":"Experimental Study on the Damping Ratio Evaluation of a Cable-Stayed Bridge Based on Damping Dissipation Function","authors":"Fengzong Gong, Cheng Pan, Ye Xia","doi":"10.1155/stc/5810450","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Damping ratio is a fundamental dynamic parameter of the structure. Recent monitoring of cable-stayed bridges has shown that the damping ratio changes under different operating conditions. In general, the damping ratio of a structure can only be evaluated after the structure is built, and it is still challenging to theoretically calculate the damping ratio of a structure beforehand. To further understand the mechanism of the bridge damping ratio, this paper proposes an evaluation method based on the damping dissipation function. The effects of the initial and modal strain energy of the structure on the damping dissipation are considered. The damping dissipation function of substructures of a laboratory cable-stayed bridge model was tested, and the structural system damping ratio was evaluated. Furthermore, the theoretical discussion and experimental verification of the effect of support friction on the damping ratio were conducted. The results indicate that the damping ratio of the substructure varies with both the vibration amplitude and the initial stress level. Consideration of the initial strain energy during testing the substructure damping dissipation function can lead to more accurate results in the evaluation of the damping ratio of the structural system. In addition, support friction also significantly influences the damping ratio of the longitudinal drift and vertical bending modes of the structure.</p>\n </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":"2025 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/stc/5810450","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/stc/5810450","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Damping ratio is a fundamental dynamic parameter of the structure. Recent monitoring of cable-stayed bridges has shown that the damping ratio changes under different operating conditions. In general, the damping ratio of a structure can only be evaluated after the structure is built, and it is still challenging to theoretically calculate the damping ratio of a structure beforehand. To further understand the mechanism of the bridge damping ratio, this paper proposes an evaluation method based on the damping dissipation function. The effects of the initial and modal strain energy of the structure on the damping dissipation are considered. The damping dissipation function of substructures of a laboratory cable-stayed bridge model was tested, and the structural system damping ratio was evaluated. Furthermore, the theoretical discussion and experimental verification of the effect of support friction on the damping ratio were conducted. The results indicate that the damping ratio of the substructure varies with both the vibration amplitude and the initial stress level. Consideration of the initial strain energy during testing the substructure damping dissipation function can lead to more accurate results in the evaluation of the damping ratio of the structural system. In addition, support friction also significantly influences the damping ratio of the longitudinal drift and vertical bending modes of the structure.
期刊介绍:
The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications.
Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics.
Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.