PADG-Pred: Exploring Ensemble Approaches for Identifying Parkinson's Disease Associated Biomarkers Using Genomic Sequences Analysis

IF 1.9 4区 生物学 Q4 CELL BIOLOGY IET Systems Biology Pub Date : 2025-03-15 DOI:10.1049/syb2.70006
Ayesha Karim, Tamim Alkhalifah, Fahad Alturise, Yaser Daanial Khan
{"title":"PADG-Pred: Exploring Ensemble Approaches for Identifying Parkinson's Disease Associated Biomarkers Using Genomic Sequences Analysis","authors":"Ayesha Karim,&nbsp;Tamim Alkhalifah,&nbsp;Fahad Alturise,&nbsp;Yaser Daanial Khan","doi":"10.1049/syb2.70006","DOIUrl":null,"url":null,"abstract":"<p>Parkinson's disease (PD), a degenerative disorder affecting the nervous system, manifests as unbalanced movements, stiffness, tremors, and coordination difficulties. Its cause, believed to involve genetic and environmental factors, underscores the critical need for prompt diagnosis and intervention to enhance treatment effectiveness. Despite the array of available diagnostics, their reliability remains a challenge. In this study, an innovative predictor PADG-Pred is proposed for the identification of Parkinson's associated biomarkers, utilising a genomic profile. In this study, a novel predictor, PADG-Pred, which not only identifies Parkinson's associated biomarkers through genomic profiling but also uniquely integrates multiple statistical feature extraction techniques with ensemble-based classification frameworks, thereby providing a more robust and interpretable decision-making process than existing tools. The processed dataset was utilised for feature extraction through multiple statistical moments and it is further involved in extensive training of the model using diverse classification techniques, encompassing Ensemble methods; XGBoost, Random Forest, Light Gradient Boosting Machine, Bagging, ExtraTrees, and Stacking. State-of-the-art validation procedures are applied, assessing key metrics such as specificity, accuracy, sensitivity/recall, and Mathew's correlation coefficient. The outcomes demonstrate the outstanding performance of PADG-RF, showcasing accuracy metrics consistently achieving ∼91% for the independent set, ∼94% for 5-fold, and ∼96% for 10-fold in cross-validation.</p>","PeriodicalId":50379,"journal":{"name":"IET Systems Biology","volume":"19 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/syb2.70006","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/syb2.70006","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Parkinson's disease (PD), a degenerative disorder affecting the nervous system, manifests as unbalanced movements, stiffness, tremors, and coordination difficulties. Its cause, believed to involve genetic and environmental factors, underscores the critical need for prompt diagnosis and intervention to enhance treatment effectiveness. Despite the array of available diagnostics, their reliability remains a challenge. In this study, an innovative predictor PADG-Pred is proposed for the identification of Parkinson's associated biomarkers, utilising a genomic profile. In this study, a novel predictor, PADG-Pred, which not only identifies Parkinson's associated biomarkers through genomic profiling but also uniquely integrates multiple statistical feature extraction techniques with ensemble-based classification frameworks, thereby providing a more robust and interpretable decision-making process than existing tools. The processed dataset was utilised for feature extraction through multiple statistical moments and it is further involved in extensive training of the model using diverse classification techniques, encompassing Ensemble methods; XGBoost, Random Forest, Light Gradient Boosting Machine, Bagging, ExtraTrees, and Stacking. State-of-the-art validation procedures are applied, assessing key metrics such as specificity, accuracy, sensitivity/recall, and Mathew's correlation coefficient. The outcomes demonstrate the outstanding performance of PADG-RF, showcasing accuracy metrics consistently achieving ∼91% for the independent set, ∼94% for 5-fold, and ∼96% for 10-fold in cross-validation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
IET Systems Biology
IET Systems Biology 生物-数学与计算生物学
CiteScore
4.20
自引率
4.30%
发文量
17
审稿时长
>12 weeks
期刊介绍: IET Systems Biology covers intra- and inter-cellular dynamics, using systems- and signal-oriented approaches. Papers that analyse genomic data in order to identify variables and basic relationships between them are considered if the results provide a basis for mathematical modelling and simulation of cellular dynamics. Manuscripts on molecular and cell biological studies are encouraged if the aim is a systems approach to dynamic interactions within and between cells. The scope includes the following topics: Genomics, transcriptomics, proteomics, metabolomics, cells, tissue and the physiome; molecular and cellular interaction, gene, cell and protein function; networks and pathways; metabolism and cell signalling; dynamics, regulation and control; systems, signals, and information; experimental data analysis; mathematical modelling, simulation and theoretical analysis; biological modelling, simulation, prediction and control; methodologies, databases, tools and algorithms for modelling and simulation; modelling, analysis and control of biological networks; synthetic biology and bioengineering based on systems biology.
期刊最新文献
PADG-Pred: Exploring Ensemble Approaches for Identifying Parkinson's Disease Associated Biomarkers Using Genomic Sequences Analysis Transcriptome sequencing and metabolome analysis to reveal renewal evidence for drought adaptation in mulberry SeqBMC: Single-cell data processing using iterative block matrix completion algorithm based on matrix factorisation StackAHTPs: An explainable antihypertensive peptides identifier based on heterogeneous features and stacked learning approach The optimised model of predicting protein-metal ion ligand binding residues
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1