首页 > 最新文献

IET Systems Biology最新文献

英文 中文
iGATTLDA: Integrative graph attention and transformer-based model for predicting lncRNA-Disease associations. iGATTLDA:基于图注意和转换器的整合模型,用于预测 lncRNA 与疾病的关联。
IF 1.9 4区 生物学 Q4 CELL BIOLOGY Pub Date : 2024-09-22 DOI: 10.1049/syb2.12098
Biffon Manyura Momanyi, Sebu Aboma Temesgen, Tian-Yu Wang, Hui Gao, Ru Gao, Hua Tang, Li-Xia Tang

Long non-coding RNAs (lncRNAs) have emerged as significant contributors to the regulation of various biological processes, and their dysregulation has been linked to a variety of human disorders. Accurate prediction of potential correlations between lncRNAs and diseases is crucial for advancing disease diagnostics and treatment procedures. The authors introduced a novel computational method, iGATTLDA, for the prediction of lncRNA-disease associations. The model utilised lncRNA and disease similarity matrices, with known associations represented in an adjacency matrix. A heterogeneous network was constructed, dissecting lncRNAs and diseases as nodes and their associations as edges. The Graph Attention Network (GAT) is employed to process initial features and corresponding adjacency information. GAT identified significant neighbouring nodes in the network, capturing intricate relationships between lncRNAs and diseases, and generating new feature representations. Subsequently, the transformer captures global dependencies and interactions across the entire sequence of features produced by the GAT. Consequently, iGATTLDA successfully captures complex relationships and interactions that conventional approaches may overlook. In evaluating iGATTLDA, it attained an area under the receiver operating characteristic (ROC) curve (AUC) of 0.95 and an area under the precision recall curve (AUPRC) of 0.96 with a two-layer multilayer perceptron (MLP) classifier. These results were notably higher compared to the majority of previously proposed models, further substantiating the model's efficiency in predicting potential lncRNA-disease associations by incorporating both local and global interactions. The implementation details can be obtained from https://github.com/momanyibiffon/iGATTLDA.

长非编码 RNA(lncRNA)已成为调控各种生物过程的重要因素,它们的失调与多种人类疾病有关。准确预测lncRNA与疾病之间的潜在相关性对于推进疾病诊断和治疗程序至关重要。作者介绍了一种新的计算方法--iGATTLDA,用于预测lncRNA与疾病的关联。该模型利用 lncRNA 和疾病的相似性矩阵,并用邻接矩阵表示已知的关联。将 lncRNA 和疾病作为节点,将它们之间的关联作为边,构建了一个异构网络。采用图形注意网络(GAT)处理初始特征和相应的邻接信息。GAT 识别网络中重要的邻接节点,捕捉 lncRNA 与疾病之间错综复杂的关系,并生成新的特征表征。随后,转换器捕捉由 GAT 生成的整个特征序列中的全局依赖关系和相互作用。因此,iGATTLDA 成功捕捉到了传统方法可能忽略的复杂关系和相互作用。在对 iGATTLDA 进行评估时,通过使用双层多层感知器(MLP)分类器,它的接收器操作特征曲线(ROC)下面积(AUC)达到了 0.95,精确召回曲线(AUPRC)下面积(AUC)达到了 0.96。与之前提出的大多数模型相比,这些结果明显更高,进一步证实了该模型通过结合局部和全局相互作用预测潜在lncRNA-疾病关联的效率。具体实现细节请访问 https://github.com/momanyibiffon/iGATTLDA。
{"title":"iGATTLDA: Integrative graph attention and transformer-based model for predicting lncRNA-Disease associations.","authors":"Biffon Manyura Momanyi, Sebu Aboma Temesgen, Tian-Yu Wang, Hui Gao, Ru Gao, Hua Tang, Li-Xia Tang","doi":"10.1049/syb2.12098","DOIUrl":"https://doi.org/10.1049/syb2.12098","url":null,"abstract":"<p><p>Long non-coding RNAs (lncRNAs) have emerged as significant contributors to the regulation of various biological processes, and their dysregulation has been linked to a variety of human disorders. Accurate prediction of potential correlations between lncRNAs and diseases is crucial for advancing disease diagnostics and treatment procedures. The authors introduced a novel computational method, iGATTLDA, for the prediction of lncRNA-disease associations. The model utilised lncRNA and disease similarity matrices, with known associations represented in an adjacency matrix. A heterogeneous network was constructed, dissecting lncRNAs and diseases as nodes and their associations as edges. The Graph Attention Network (GAT) is employed to process initial features and corresponding adjacency information. GAT identified significant neighbouring nodes in the network, capturing intricate relationships between lncRNAs and diseases, and generating new feature representations. Subsequently, the transformer captures global dependencies and interactions across the entire sequence of features produced by the GAT. Consequently, iGATTLDA successfully captures complex relationships and interactions that conventional approaches may overlook. In evaluating iGATTLDA, it attained an area under the receiver operating characteristic (ROC) curve (AUC) of 0.95 and an area under the precision recall curve (AUPRC) of 0.96 with a two-layer multilayer perceptron (MLP) classifier. These results were notably higher compared to the majority of previously proposed models, further substantiating the model's efficiency in predicting potential lncRNA-disease associations by incorporating both local and global interactions. The implementation details can be obtained from https://github.com/momanyibiffon/iGATTLDA.</p>","PeriodicalId":50379,"journal":{"name":"IET Systems Biology","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142299986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A tumour-associated macrophage-based signature for deciphering prognosis and immunotherapy response in prostate cancer. 基于肿瘤相关巨噬细胞的特征,用于解读前列腺癌的预后和免疫疗法反应。
IF 1.9 4区 生物学 Q4 CELL BIOLOGY Pub Date : 2024-08-13 DOI: 10.1049/syb2.12097
Jian Wang, Tao Guo, Yuanyuan Mi, Xiangyu Meng, Shuang Xu, Feng Dai, Chengwen Sun, Yi Huang, Jun Wang, Lijie Zhu, Jianquan Hou, Sheng Wu

For the multistage progression of prostate cancer (PCa) and resistance to immunotherapy, tumour-associated macrophage is an essential contributor. Although immunotherapy is an important and promising treatment modality for cancer, most patients with PCa are not responsive towards it. In addition to exploring new therapeutic targets, it is imperative to identify highly immunotherapy-sensitive individuals. This research aimed to establish a signature risk model, which derived from the macrophage, to assess immunotherapeutic responses and predict prognosis. Data from the UCSC-XENA, GEO and TISCH databases were extracted for analysis. Based on both single-cell datasets and bulk transcriptome profiles, a macrophage-related score (MRS) consisting of the 10-gene panel was constructed using the gene set variation analysis. MRS was highly correlated with hypoxia, angiogenesis, and epithelial-mesenchymal transition, suggesting its potential as a risk indicator. Moreover, poor immunotherapy responses and worse prognostic performance were observed in the high-MRS group of various immunotherapy cohorts. Additionally, APOE, one of the constituent genes of the MRS, affected the polarisation of macrophages. In particular, the reduced level of M2 macrophage and tumour progression suppression were observed in PCa xenografts which implanted in Apolipoprotein E-knockout mice. The constructed MRS has the potential as a robust prognostic prediction tool, and can aid in the treatment selection of PCa, especially immunotherapy options.

前列腺癌(PCa)的多期进展和对免疫疗法的抵抗,肿瘤相关巨噬细胞是一个重要因素。尽管免疫疗法是一种重要且前景广阔的癌症治疗方式,但大多数前列腺癌患者对免疫疗法并不敏感。除了探索新的治疗靶点,当务之急是确定对免疫疗法高度敏感的个体。这项研究旨在建立一个源自巨噬细胞的特征风险模型,以评估免疫治疗反应并预测预后。研究人员从 UCSC-XENA、GEO 和 TISCH 数据库中提取数据进行分析。基于单细胞数据集和大容量转录组图谱,利用基因组变异分析构建了由10个基因组成的巨噬细胞相关评分(MRS)。MRS与缺氧、血管生成和上皮-间质转化高度相关,表明其具有作为风险指标的潜力。此外,在各种免疫疗法队列中观察到,高MRS组的免疫疗法反应较差,预后表现较差。此外,MRS的组成基因之一APOE也影响了巨噬细胞的极化。特别是在植入载脂蛋白E基因敲除小鼠体内的PCa异种移植物中观察到了M2巨噬细胞水平的降低和肿瘤进展的抑制。构建的MRS有可能成为一种可靠的预后预测工具,并有助于选择PCa的治疗方法,尤其是免疫疗法。
{"title":"A tumour-associated macrophage-based signature for deciphering prognosis and immunotherapy response in prostate cancer.","authors":"Jian Wang, Tao Guo, Yuanyuan Mi, Xiangyu Meng, Shuang Xu, Feng Dai, Chengwen Sun, Yi Huang, Jun Wang, Lijie Zhu, Jianquan Hou, Sheng Wu","doi":"10.1049/syb2.12097","DOIUrl":"https://doi.org/10.1049/syb2.12097","url":null,"abstract":"<p><p>For the multistage progression of prostate cancer (PCa) and resistance to immunotherapy, tumour-associated macrophage is an essential contributor. Although immunotherapy is an important and promising treatment modality for cancer, most patients with PCa are not responsive towards it. In addition to exploring new therapeutic targets, it is imperative to identify highly immunotherapy-sensitive individuals. This research aimed to establish a signature risk model, which derived from the macrophage, to assess immunotherapeutic responses and predict prognosis. Data from the UCSC-XENA, GEO and TISCH databases were extracted for analysis. Based on both single-cell datasets and bulk transcriptome profiles, a macrophage-related score (MRS) consisting of the 10-gene panel was constructed using the gene set variation analysis. MRS was highly correlated with hypoxia, angiogenesis, and epithelial-mesenchymal transition, suggesting its potential as a risk indicator. Moreover, poor immunotherapy responses and worse prognostic performance were observed in the high-MRS group of various immunotherapy cohorts. Additionally, APOE, one of the constituent genes of the MRS, affected the polarisation of macrophages. In particular, the reduced level of M2 macrophage and tumour progression suppression were observed in PCa xenografts which implanted in Apolipoprotein E-knockout mice. The constructed MRS has the potential as a robust prognostic prediction tool, and can aid in the treatment selection of PCa, especially immunotherapy options.</p>","PeriodicalId":50379,"journal":{"name":"IET Systems Biology","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141977112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification and analysis of epithelial-mesenchymal transition-related key long non-coding RNAs in hypospadias 尿道下裂中上皮-间质转化相关关键长非编码 RNA 的鉴定与分析
IF 1.9 4区 生物学 Q4 CELL BIOLOGY Pub Date : 2024-07-25 DOI: 10.1049/syb2.12096
Hongjie Gao, Chen Ding, Mengmeng Chang, Zhiyi Lu, Ding Li, Dan Bi, Fengyin Sun

EMT dysfunction is a dominant mechanisms of hypospadias. Thus, identification of EMT-related lncRNAs based on transcriptome sequencing data of hypospadias might provide novel molecular markers and therapeutic targets for hypospadias. First, the microarray data related to hypospadias were downloaded from Gene Expression Omnibus (GEO). Besides, the differentially expressed lncRNAs and messenger RNAs (mRNAs) related to EMT were screened to construct lncRNA-mRNA co-expression interaction pairs. In addition, the microRNA (miRNA) prediction analysis was performed through bioinformatics methods to construct a ceRNA network. Moreover, function prediction and function enrichment and pathway analyses were also performed. Finally, the core EMT-related lncRNAs were verified based on mRNA expression changes and cell functions. A total of 6 EMT-related lncRNAs were identified and 123 mRNA-lncRNA co-expression interaction pairs were screened in this study. Additionally, a ceRNA regulatory network comprising 17 mRNAs, 4 lncRNAs, and 28 miRNAs was constructed based on the prediction of hypospadias-related miRNAs. The validation results of the dataset GSE121712 revealed that only BEX1 was positively correlated with the expression of the lncRNA GNAS-AS1 (r = 0.874, P < 0.01), both of which had high expression. The cell experiment results demonstrated that interfering with the expression of GNAS-AS1 significantly promoted the proliferation, migration, and EMT of cells. Importantly, it was confirmed that GNAS-AS1 can serve as a ceRNA and play an important role in the EMT of hypospadias. Hence, it may be considered as a potential target in the treatment of this disease.

EMT功能障碍是尿道下裂的主要发病机制。因此,根据尿道下裂的转录组测序数据鉴定与EMT相关的lncRNA可能为尿道下裂提供新的分子标记和治疗靶点。首先,从基因表达总库(Gene Expression Omnibus,GEO)中下载了尿道下裂相关的芯片数据。此外,还筛选了与EMT相关的差异表达的lncRNA和信使RNA(mRNA),以构建lncRNA-mRNA共表达相互作用对。此外,还通过生物信息学方法进行了微RNA(miRNA)预测分析,构建了ceRNA网络。此外,还进行了功能预测、功能富集和通路分析。最后,根据mRNA表达变化和细胞功能验证了与EMT相关的核心lncRNA。本研究共鉴定出6个EMT相关lncRNA,并筛选出123对mRNA-lncRNA共表达相互作用对。此外,在预测尿道下裂相关 miRNA 的基础上,构建了由 17 个 mRNA、4 个 lncRNA 和 28 个 miRNA 组成的 ceRNA 调控网络。数据集GSE121712的验证结果显示,只有BEX1与lncRNA GNAS-AS1的表达呈正相关(r = 0.874,P < 0.01),两者均为高表达。细胞实验结果表明,干扰 GNAS-AS1 的表达会显著促进细胞的增殖、迁移和 EMT。重要的是,实验证实 GNAS-AS1 可作为一种 ceRNA,在尿道下裂的 EMT 中发挥重要作用。因此,它可被视为治疗尿道下裂的潜在靶点。
{"title":"Identification and analysis of epithelial-mesenchymal transition-related key long non-coding RNAs in hypospadias","authors":"Hongjie Gao,&nbsp;Chen Ding,&nbsp;Mengmeng Chang,&nbsp;Zhiyi Lu,&nbsp;Ding Li,&nbsp;Dan Bi,&nbsp;Fengyin Sun","doi":"10.1049/syb2.12096","DOIUrl":"10.1049/syb2.12096","url":null,"abstract":"<p>EMT dysfunction is a dominant mechanisms of hypospadias. Thus, identification of EMT-related lncRNAs based on transcriptome sequencing data of hypospadias might provide novel molecular markers and therapeutic targets for hypospadias. First, the microarray data related to hypospadias were downloaded from Gene Expression Omnibus (GEO). Besides, the differentially expressed lncRNAs and messenger RNAs (mRNAs) related to EMT were screened to construct lncRNA-mRNA co-expression interaction pairs. In addition, the microRNA (miRNA) prediction analysis was performed through bioinformatics methods to construct a ceRNA network. Moreover, function prediction and function enrichment and pathway analyses were also performed. Finally, the core EMT-related lncRNAs were verified based on mRNA expression changes and cell functions. A total of 6 EMT-related lncRNAs were identified and 123 mRNA-lncRNA co-expression interaction pairs were screened in this study. Additionally, a ceRNA regulatory network comprising 17 mRNAs, 4 lncRNAs, and 28 miRNAs was constructed based on the prediction of hypospadias-related miRNAs. The validation results of the dataset GSE121712 revealed that only BEX1 was positively correlated with the expression of the lncRNA GNAS-AS1 (r = 0.874, <i>P</i> &lt; 0.01), both of which had high expression. The cell experiment results demonstrated that interfering with the expression of GNAS-AS1 significantly promoted the proliferation, migration, and EMT of cells. Importantly, it was confirmed that GNAS-AS1 can serve as a ceRNA and play an important role in the EMT of hypospadias. Hence, it may be considered as a potential target in the treatment of this disease.</p>","PeriodicalId":50379,"journal":{"name":"IET Systems Biology","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/syb2.12096","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141762330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Revealing the potential role of hub metabolism-related genes and their correlation with immune cells in acute ischemic stroke 揭示枢纽代谢相关基因的潜在作用及其与免疫细胞在急性缺血性中风中的相关性。
IF 1.9 4区 生物学 Q4 CELL BIOLOGY Pub Date : 2024-06-08 DOI: 10.1049/syb2.12095
Xianjing Zhang, Tengxiao Xu, Chen Wang, Yueyue Lin, Weimi Hu, Maokui Yue, Hao Li

Objectives

Acute ischemic stroke (AIS) is caused by cerebral ischemia due to thrombosis in the blood vessel. The purpose of this study is to identify key genes related to metabolism to aid in the mechanism research and management of AIS.

Materials and Methods

Gene expression data were downloaded from the Gene Expression Omnibus database. Weighted gene co-expression network analysis, Gene Ontology and kyoto encyclopedia of genes and genomes analysis were used to identify metabolism-related genes that may be involved in the regulation of AIS. A protein protein interaction network was mapped using Cytoscape based on the STRING database. Subsequently, hub metabolism-related genes were identified based on Cytoscape-CytoNCA and Cytoscape-MCODE plug-ins. Least absolute shrinkage and selection operator algorithm and differential expression analysis. In addition, drug prediction, molecular docking, ceRNA network construction, and correlation analysis with immune cell infiltration were performed to explore their potential molecular mechanisms of action in AIS. Finally, the expression of hub gene was verified by real-time PCR.

Results

Metabolism-related genes FBL, HEATR1, HSPA8, MTMR4, NDUFC1, NDUFS8 and SNU13 were identified. The AUC values of FBL, HEATR1, HSPA8, MTMR4, NDUFS8 and SNU13 were all greater than 0.8, suggesting that they had good diagnostic accuracy. Correlation analysis found that their expression levels were also related to the infiltration levels of multiple immune cells, such as Activated.CD8.T.cell and Activated.dendritic.cell. It was found that only HSPA8 was successfully matched to drugs with literature support, and these drugs were acetaminophen, bupivacaine, dexamethasone, gentamicin, tretinoin and cisplatin. Moreover, it was also identified that the ENSG000000218510-hsa-miR-330-3p-HEATR1 axis may be involved in regulating AIS.

Conclusions

The identification of FBL, HEATR1, HSPA8, MTMR4, NDUFC1, NDUFS8 and SNU13 provides a new research direction for exploring the molecular mechanisms of AIS, which can help in clinical management and diagnosis.

目的:急性缺血性脑卒中(AIS)是由于血管内血栓形成导致脑缺血引起的。本研究的目的是确定与代谢相关的关键基因,以帮助 AIS 的机制研究和治疗:基因表达数据从基因表达总库数据库下载。加权基因共表达网络分析、基因本体和京都基因和基因组百科全书分析用于识别可能参与调控AIS的代谢相关基因。基于 STRING 数据库,使用 Cytoscape 绘制了蛋白质相互作用网络图。随后,基于Cytoscape-CytoNCA和Cytoscape-MCODE插件确定了枢纽代谢相关基因。采用最小绝对收缩和选择算子算法以及差异表达分析。此外,还进行了药物预测、分子对接、ceRNA 网络构建以及与免疫细胞浸润的相关性分析,以探索其在 AIS 中的潜在分子作用机制。最后,通过实时 PCR 验证了枢纽基因的表达:结果:发现了代谢相关基因FBL、HEATR1、HSPA8、MTMR4、NDUFC1、NDUFS8和SNU13。FBL、HEATR1、HSPA8、MTMR4、NDUFS8和SNU13的AUC值均大于0.8,表明它们具有良好的诊断准确性。相关分析发现,它们的表达水平还与活化的 CD8 T 细胞和活化的树突状细胞等多种免疫细胞的浸润水平有关。研究发现,只有 HSPA8 与有文献支持的药物成功匹配,这些药物是对乙酰氨基酚、布比卡因、地塞米松、庆大霉素、曲替诺和顺铂。此外,还发现ENSG000000218510-hsa-miR-330-3p-HEATR1轴可能参与调控AIS:结论:FBL、HEATR1、HSPA8、MTMR4、NDUFC1、NDUFS8和SNU13的鉴定为探索AIS的分子机制提供了新的研究方向,有助于临床管理和诊断。
{"title":"Revealing the potential role of hub metabolism-related genes and their correlation with immune cells in acute ischemic stroke","authors":"Xianjing Zhang,&nbsp;Tengxiao Xu,&nbsp;Chen Wang,&nbsp;Yueyue Lin,&nbsp;Weimi Hu,&nbsp;Maokui Yue,&nbsp;Hao Li","doi":"10.1049/syb2.12095","DOIUrl":"10.1049/syb2.12095","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Objectives</h3>\u0000 \u0000 <p>Acute ischemic stroke (AIS) is caused by cerebral ischemia due to thrombosis in the blood vessel. The purpose of this study is to identify key genes related to metabolism to aid in the mechanism research and management of AIS.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Materials and Methods</h3>\u0000 \u0000 <p>Gene expression data were downloaded from the Gene Expression Omnibus database. Weighted gene co-expression network analysis, Gene Ontology and kyoto encyclopedia of genes and genomes analysis were used to identify metabolism-related genes that may be involved in the regulation of AIS. A protein protein interaction network was mapped using Cytoscape based on the STRING database. Subsequently, hub metabolism-related genes were identified based on Cytoscape-CytoNCA and Cytoscape-MCODE plug-ins. Least absolute shrinkage and selection operator algorithm and differential expression analysis. In addition, drug prediction, molecular docking, ceRNA network construction, and correlation analysis with immune cell infiltration were performed to explore their potential molecular mechanisms of action in AIS. Finally, the expression of hub gene was verified by real-time PCR.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>Metabolism-related genes FBL, HEATR1, HSPA8, MTMR4, NDUFC1, NDUFS8 and SNU13 were identified. The AUC values of FBL, HEATR1, HSPA8, MTMR4, NDUFS8 and SNU13 were all greater than 0.8, suggesting that they had good diagnostic accuracy. Correlation analysis found that their expression levels were also related to the infiltration levels of multiple immune cells, such as Activated.CD8.T.cell and Activated.dendritic.cell. It was found that only HSPA8 was successfully matched to drugs with literature support, and these drugs were acetaminophen, bupivacaine, dexamethasone, gentamicin, tretinoin and cisplatin. Moreover, it was also identified that the ENSG000000218510-hsa-miR-330-3p-HEATR1 axis may be involved in regulating AIS.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>The identification of FBL, HEATR1, HSPA8, MTMR4, NDUFC1, NDUFS8 and SNU13 provides a new research direction for exploring the molecular mechanisms of AIS, which can help in clinical management and diagnosis.</p>\u0000 </section>\u0000 </div>","PeriodicalId":50379,"journal":{"name":"IET Systems Biology","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/syb2.12095","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141293868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gene signatures of endoplasmic reticulum stress and mitophagy for prognostic risk prediction in lung adenocarcinoma 用于肺腺癌预后风险预测的内质网应激和有丝分裂的基因特征。
IF 2.3 4区 生物学 Q2 Mathematics Pub Date : 2024-05-30 DOI: 10.1049/syb2.12092
Xiong Lin, Miaoling Yang, Yuanling Huang, Xiaoli Huang, Huibo Shi, Binbin Chen, Jianle Kang, Sunkui Ke

Genes associated with endoplasmic reticulum stress (ERS) and mitophagy can be conducive to predicting solid tumour prognosis. The authors aimed to develop a prognosis prediction model for these genes in lung adenocarcinoma (LUAD). Relevant gene expression and clinical information were collected from public databases including Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). A total of 265 differentially expressed genes was finally selected (71 up-regulated and 194 downregulated) in the LUAD dataset. Among these, 15 candidate ERS and mitophagy genes (ATG12, CSNK2A1, MAP1LC3A, MAP1LC3B, MFN2, PGAM5, PINK1, RPS27A, SQSTM1, SRC, UBA52, UBB, UBC, ULK1, and VDAC1) might be critical to LUAD based on the expression analysis after crossing with the ERS and mitochondrial autophagy genes. The prediction model demonstrated the ability to effectively predict the 5-, 3-, and 1-year prognoses of LUAD patients in both GEO and TCGA databases. Moreover, high VDAC1 expression was associated with poor overall survival in LUAD (p < 0.001), suggesting it might be a critical gene for LUAD prognosis prediction. Overall, the prognosis model based on ERS and mitophagy genes in LUAD can be useful for evaluating the prognosis of patients with LUAD, and VDAC1 may serve as a promising biomarker for LUAD prognosis.

与内质网应激(ERS)和有丝分裂相关的基因有助于预测实体瘤的预后。作者旨在为肺腺癌(LUAD)中的这些基因开发一个预后预测模型。研究人员从基因表达总库(GEO)和癌症基因组图谱(TCGA)等公共数据库中收集了相关的基因表达和临床信息。最终在 LUAD 数据集中筛选出 265 个差异表达基因(71 个上调,194 个下调)。其中,根据与ERS和线粒体自噬基因交叉后的表达分析,15个候选ERS和线粒体自噬基因(ATG12、CSNK2A1、MAP1LC3A、MAP1LC3B、MFN2、PGAM5、PINK1、RPS27A、SQSTM1、SRC、UBA52、UBB、UBC、ULK1和VDAC1)可能对LUAD至关重要。在GEO和TCGA数据库中,该预测模型都能有效预测LUAD患者的5年、3年和1年预后。此外,VDAC1的高表达与LUAD患者的总生存率低有关(p
{"title":"Gene signatures of endoplasmic reticulum stress and mitophagy for prognostic risk prediction in lung adenocarcinoma","authors":"Xiong Lin,&nbsp;Miaoling Yang,&nbsp;Yuanling Huang,&nbsp;Xiaoli Huang,&nbsp;Huibo Shi,&nbsp;Binbin Chen,&nbsp;Jianle Kang,&nbsp;Sunkui Ke","doi":"10.1049/syb2.12092","DOIUrl":"10.1049/syb2.12092","url":null,"abstract":"<p>Genes associated with endoplasmic reticulum stress (ERS) and mitophagy can be conducive to predicting solid tumour prognosis. The authors aimed to develop a prognosis prediction model for these genes in lung adenocarcinoma (LUAD). Relevant gene expression and clinical information were collected from public databases including Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). A total of 265 differentially expressed genes was finally selected (71 up-regulated and 194 downregulated) in the LUAD dataset. Among these, 15 candidate ERS and mitophagy genes (<i>ATG12, CSNK2A1, MAP1LC3A, MAP1LC3B, MFN2, PGAM5, PINK1, RPS2</i>7A<i>, SQSTM1, SRC, UBA52, UBB, UBC, ULK1</i>, and <i>VDAC1</i>) might be critical to LUAD based on the expression analysis after crossing with the ERS and mitochondrial autophagy genes. The prediction model demonstrated the ability to effectively predict the 5-, 3-, and 1-year prognoses of LUAD patients in both GEO and TCGA databases. Moreover, high VDAC1 expression was associated with poor overall survival in LUAD (<i>p</i> &lt; 0.001), suggesting it might be a critical gene for LUAD prognosis prediction. Overall, the prognosis model based on ERS and mitophagy genes in LUAD can be useful for evaluating the prognosis of patients with LUAD, and VDAC1 may serve as a promising biomarker for LUAD prognosis.</p>","PeriodicalId":50379,"journal":{"name":"IET Systems Biology","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/syb2.12092","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141176637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adjusting laser power to control the heat generated by nanoparticles at the site of a patient's cells 调整激光功率,控制纳米粒子在患者细胞部位产生的热量。
IF 1.9 4区 生物学 Q4 CELL BIOLOGY Pub Date : 2024-05-24 DOI: 10.1049/syb2.12093
Seyed Ehsan Razavi, Hamed Khodadadi, Masoud Goharimanesh

Cancer treatment often involves heat therapy, commonly administered alongside chemotherapy and radiation therapy. The authors address the challenges posed by heat treatment methods and introduce effective control techniques. These approaches enable the precise adjustment of laser radiation over time, ensuring the tumour's core temperature attains an acceptable level with a well-defined transient response. In these control strategies, the input is the actual tumour temperature compared to the desired value, while the output governs laser radiation power. Efficient control methods are explored for regulating tumour temperature in the presence of nanoparticles and laser radiation, validated through simulations on a relevant physiological model. Initially, a Proportional-Integral-Derivative (PID) controller serves as the foundational compensator. The PID controller parameters are optimised using a combination of trial and error and the Imperialist Competitive Algorithm (ICA). ICA, known for its swift convergence and reduced computational complexity, proves instrumental in parameter determination. Furthermore, an intelligent controller based on an artificial neural network is integrated with the PID controller and compared against alternative methods. Simulation results underscore the efficacy of the combined neural network-PID controller in achieving precise temperature control. This comprehensive study illuminates promising avenues for enhancing heat therapy's effectiveness in cancer treatment.

癌症治疗通常涉及热疗,通常与化疗和放疗同时进行。作者针对热疗方法带来的挑战,介绍了有效的控制技术。这些方法能够随着时间的推移精确调整激光辐射,确保肿瘤的核心温度达到可接受的水平,并具有明确的瞬态响应。在这些控制策略中,输入是实际肿瘤温度与期望值的比较,而输出则是激光辐射功率。通过在相关生理模型上进行模拟验证,探索了在纳米粒子和激光辐射存在的情况下调节肿瘤温度的高效控制方法。最初,一个比例-积分-微分(PID)控制器作为基础补偿器。PID 控制器参数的优化结合了试错和帝国主义竞争算法 (ICA)。ICA 以其收敛速度快和计算复杂度低而著称,在参数确定方面发挥了重要作用。此外,基于人工神经网络的智能控制器与 PID 控制器相结合,并与其他方法进行了比较。仿真结果表明,神经网络-PID 组合控制器在实现精确温度控制方面非常有效。这项综合研究为提高热疗在癌症治疗中的有效性指明了前景广阔的途径。
{"title":"Adjusting laser power to control the heat generated by nanoparticles at the site of a patient's cells","authors":"Seyed Ehsan Razavi,&nbsp;Hamed Khodadadi,&nbsp;Masoud Goharimanesh","doi":"10.1049/syb2.12093","DOIUrl":"10.1049/syb2.12093","url":null,"abstract":"<p>Cancer treatment often involves heat therapy, commonly administered alongside chemotherapy and radiation therapy. The authors address the challenges posed by heat treatment methods and introduce effective control techniques. These approaches enable the precise adjustment of laser radiation over time, ensuring the tumour's core temperature attains an acceptable level with a well-defined transient response. In these control strategies, the input is the actual tumour temperature compared to the desired value, while the output governs laser radiation power. Efficient control methods are explored for regulating tumour temperature in the presence of nanoparticles and laser radiation, validated through simulations on a relevant physiological model. Initially, a Proportional-Integral-Derivative (PID) controller serves as the foundational compensator. The PID controller parameters are optimised using a combination of trial and error and the Imperialist Competitive Algorithm (ICA). ICA, known for its swift convergence and reduced computational complexity, proves instrumental in parameter determination. Furthermore, an intelligent controller based on an artificial neural network is integrated with the PID controller and compared against alternative methods. Simulation results underscore the efficacy of the combined neural network-PID controller in achieving precise temperature control. This comprehensive study illuminates promising avenues for enhancing heat therapy's effectiveness in cancer treatment.</p>","PeriodicalId":50379,"journal":{"name":"IET Systems Biology","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/syb2.12093","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141094226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DNA methylation plays important roles in lifestyle transition of Arthrobotrys oligospora DNA 甲基化在寡孢子节肢动物的生活方式转变中发挥着重要作用。
IF 2.3 4区 生物学 Q2 Mathematics Pub Date : 2024-05-17 DOI: 10.1049/syb2.12094
Jiajia Shi, Jiaxin Liu, Heng Li, Yao Tang, Shuqun Liu, Zhirong Sun, Zefen Yu, Xinglai Ji

Trap formation is the key indicator of carnivorous lifestyle transition of nematode-trapping fungi (NTF). Here, the DNA methylation profile was explored during trap induction of Arthrobotrys oligospora, a typical NTF that captures nematodes by developing adhesive networks. Whole-genome bisulfite sequencing identified 871 methylation sites and 1979 differentially methylated regions (DMRs). This first-of-its-kind investigation unveiled the widespread presence of methylation systems in NTF, and suggested potential regulation of ribosomal RNAs through DNA methylation. Functional analysis indicated DNA methylation's involvement in complex gene regulations during trap induction, impacting multiple biological processes like response to stimulus, transporter activity, cell reproduction and molecular function regulator. These findings provide a glimpse into the important roles of DNA methylation in trap induction and offer new insights for understanding the molecular mechanisms driving carnivorous lifestyle transition of NTF.

陷阱的形成是线虫捕获真菌(NTF)向肉食性生活方式转变的关键指标。在此,研究人员探讨了一种典型的捕线虫真菌 Arthrobotrys oligospora 在诱导捕获线虫过程中的 DNA 甲基化特征。全基因组亚硫酸氢盐测序确定了 871 个甲基化位点和 1979 个差异甲基化区域(DMR)。这项首创性研究揭示了甲基化系统在 NTF 中的广泛存在,并提出了通过 DNA 甲基化调控核糖体 RNA 的可能性。功能分析表明,DNA甲基化参与了陷阱诱导过程中复杂的基因调控,影响了多种生物过程,如对刺激的反应、转运体活性、细胞繁殖和分子功能调节。这些发现让人们看到了 DNA 甲基化在陷阱诱导过程中的重要作用,并为理解驱动 NTF 向肉食性生活方式转变的分子机制提供了新的见解。
{"title":"DNA methylation plays important roles in lifestyle transition of Arthrobotrys oligospora","authors":"Jiajia Shi,&nbsp;Jiaxin Liu,&nbsp;Heng Li,&nbsp;Yao Tang,&nbsp;Shuqun Liu,&nbsp;Zhirong Sun,&nbsp;Zefen Yu,&nbsp;Xinglai Ji","doi":"10.1049/syb2.12094","DOIUrl":"10.1049/syb2.12094","url":null,"abstract":"<p>Trap formation is the key indicator of carnivorous lifestyle transition of nematode-trapping fungi (NTF). Here, the DNA methylation profile was explored during trap induction of <i>Arthrobotrys oligospora</i>, a typical NTF that captures nematodes by developing adhesive networks. Whole-genome bisulfite sequencing identified 871 methylation sites and 1979 differentially methylated regions (DMRs). This first-of-its-kind investigation unveiled the widespread presence of methylation systems in NTF, and suggested potential regulation of ribosomal RNAs through DNA methylation. Functional analysis indicated DNA methylation's involvement in complex gene regulations during trap induction, impacting multiple biological processes like response to stimulus, transporter activity, cell reproduction and molecular function regulator. These findings provide a glimpse into the important roles of DNA methylation in trap induction and offer new insights for understanding the molecular mechanisms driving carnivorous lifestyle transition of NTF.</p>","PeriodicalId":50379,"journal":{"name":"IET Systems Biology","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/syb2.12094","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140960620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DNA methylation plays important roles in lifestyle transition of Arthrobotrys oligospora. DNA 甲基化在寡孢子节肢动物的生活方式转变中发挥着重要作用。
IF 2.3 4区 生物学 Q2 Mathematics Pub Date : 2024-05-17 DOI: 10.1049/syb2.12094
Jiajia Shi, Jiaxin Liu, Heng Li, Yao Tang, Shuqun Liu, Zhirong Sun, Zefen Yu, Xinglai Ji
Trap formation is the key indicator of carnivorous lifestyle transition of nematode-trapping fungi (NTF). Here, the DNA methylation profile was explored during trap induction of Arthrobotrys oligospora, a typical NTF that captures nematodes by developing adhesive networks. Whole-genome bisulfite sequencing identified 871 methylation sites and 1979 differentially methylated regions (DMRs). This first-of-its-kind investigation unveiled the widespread presence of methylation systems in NTF, and suggested potential regulation of ribosomal RNAs through DNA methylation. Functional analysis indicated DNA methylation's involvement in complex gene regulations during trap induction, impacting multiple biological processes like response to stimulus, transporter activity, cell reproduction and molecular function regulator. These findings provide a glimpse into the important roles of DNA methylation in trap induction and offer new insights for understanding the molecular mechanisms driving carnivorous lifestyle transition of NTF.
陷阱的形成是线虫捕获真菌(NTF)向肉食性生活方式转变的关键指标。在此,研究人员探讨了一种典型的捕线虫真菌 Arthrobotrys oligospora 在诱导捕获线虫过程中的 DNA 甲基化特征。全基因组亚硫酸氢盐测序确定了 871 个甲基化位点和 1979 个差异甲基化区域(DMR)。这项首创性研究揭示了甲基化系统在 NTF 中的广泛存在,并提出了通过 DNA 甲基化调控核糖体 RNA 的可能性。功能分析表明,DNA甲基化参与了陷阱诱导过程中复杂的基因调控,影响了多种生物过程,如对刺激的反应、转运体活性、细胞繁殖和分子功能调节。这些发现让人们看到了 DNA 甲基化在陷阱诱导过程中的重要作用,并为理解驱动 NTF 向肉食性生活方式转变的分子机制提供了新的见解。
{"title":"DNA methylation plays important roles in lifestyle transition of Arthrobotrys oligospora.","authors":"Jiajia Shi, Jiaxin Liu, Heng Li, Yao Tang, Shuqun Liu, Zhirong Sun, Zefen Yu, Xinglai Ji","doi":"10.1049/syb2.12094","DOIUrl":"https://doi.org/10.1049/syb2.12094","url":null,"abstract":"Trap formation is the key indicator of carnivorous lifestyle transition of nematode-trapping fungi (NTF). Here, the DNA methylation profile was explored during trap induction of Arthrobotrys oligospora, a typical NTF that captures nematodes by developing adhesive networks. Whole-genome bisulfite sequencing identified 871 methylation sites and 1979 differentially methylated regions (DMRs). This first-of-its-kind investigation unveiled the widespread presence of methylation systems in NTF, and suggested potential regulation of ribosomal RNAs through DNA methylation. Functional analysis indicated DNA methylation's involvement in complex gene regulations during trap induction, impacting multiple biological processes like response to stimulus, transporter activity, cell reproduction and molecular function regulator. These findings provide a glimpse into the important roles of DNA methylation in trap induction and offer new insights for understanding the molecular mechanisms driving carnivorous lifestyle transition of NTF.","PeriodicalId":50379,"journal":{"name":"IET Systems Biology","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140965855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrated bioinformatics analysis identified leucine rich repeat containing 15 and secreted phosphoprotein 1 as hub genes for calcific aortic valve disease and osteoarthritis 综合生物信息学分析确定了富含亮氨酸重复序列 15 和分泌型磷蛋白 1 是钙化性主动脉瓣疾病和骨关节炎的枢纽基因。
IF 2.3 4区 生物学 Q2 Mathematics Pub Date : 2024-04-02 DOI: 10.1049/syb2.12091
Shuji Gong, Kun Xiang, Le Chen, Huanwei Zhuang, Yaning Song, Jinlan Chen

Calcific aortic valve disease (CAVD) and osteoarthritis (OA) are common diseases in the ageing population and share similar pathogenesis, especially in inflammation. This study aims to discover potential diagnostic and therapeutic targets in patients with CAVD and OA. Three CAVD datasets and one OA dataset were obtained from the Gene Expression Omnibus database. We used bioinformatics methods to search for key genes and immune infiltration, and established a ceRNA network. Immunohistochemical staining was performed to verify the expression of candidate genes in human and mice aortic valve tissues. Two key genes obtained, leucine rich repeat containing 15 (LRRC15) and secreted phosphoprotein 1 (SPP1), were further screened using machine learning and verified in human and mice aortic valve tissues. Compared to normal tissues, the infiltration of immune cells in CAVD tissues was significantly higher, and the expressions of LRRC15 and SPP1 were positively correlated with immune cells infiltration. Moreover, the ceRNA network showed extensive regulatory interactions based on LRRC15 and SPP1. The authors’ findings identified LRRC15 and SPP1 as hub genes in immunological mechanisms during CAVD and OA initiation and progression, as well as potential targets for drug development.

钙化性主动脉瓣病(CAVD)和骨关节炎(OA)是老年人群中的常见疾病,其发病机制相似,尤其是在炎症方面。本研究旨在发现 CAVD 和 OA 患者的潜在诊断和治疗靶点。我们从基因表达总库(Gene Expression Omnibus)数据库中获得了三个CAVD数据集和一个OA数据集。我们使用生物信息学方法搜索关键基因和免疫浸润,并建立了ceRNA网络。免疫组化染色验证了候选基因在人和小鼠主动脉瓣组织中的表达。利用机器学习进一步筛选了两个关键基因,即富含亮氨酸重复序列15(LRRC15)和分泌型磷蛋白1(SPP1),并在人和小鼠主动脉瓣组织中进行了验证。与正常组织相比,CAVD组织中免疫细胞的浸润显著增加,而LRRC15和SPP1的表达与免疫细胞的浸润呈正相关。此外,ceRNA网络显示了基于LRRC15和SPP1的广泛调控相互作用。作者的研究发现,LRRC15和SPP1是CAVD和OA发生和发展过程中免疫机制的枢纽基因,也是药物开发的潜在靶点。
{"title":"Integrated bioinformatics analysis identified leucine rich repeat containing 15 and secreted phosphoprotein 1 as hub genes for calcific aortic valve disease and osteoarthritis","authors":"Shuji Gong,&nbsp;Kun Xiang,&nbsp;Le Chen,&nbsp;Huanwei Zhuang,&nbsp;Yaning Song,&nbsp;Jinlan Chen","doi":"10.1049/syb2.12091","DOIUrl":"10.1049/syb2.12091","url":null,"abstract":"<p>Calcific aortic valve disease (CAVD) and osteoarthritis (OA) are common diseases in the ageing population and share similar pathogenesis, especially in inflammation. This study aims to discover potential diagnostic and therapeutic targets in patients with CAVD and OA. Three CAVD datasets and one OA dataset were obtained from the Gene Expression Omnibus database. We used bioinformatics methods to search for key genes and immune infiltration, and established a ceRNA network. Immunohistochemical staining was performed to verify the expression of candidate genes in human and mice aortic valve tissues. Two key genes obtained, leucine rich repeat containing 15 (LRRC15) and secreted phosphoprotein 1 (SPP1), were further screened using machine learning and verified in human and mice aortic valve tissues. Compared to normal tissues, the infiltration of immune cells in CAVD tissues was significantly higher, and the expressions of LRRC15 and SPP1 were positively correlated with immune cells infiltration. Moreover, the ceRNA network showed extensive regulatory interactions based on LRRC15 and SPP1. The authors’ findings identified LRRC15 and SPP1 as hub genes in immunological mechanisms during CAVD and OA initiation and progression, as well as potential targets for drug development.</p>","PeriodicalId":50379,"journal":{"name":"IET Systems Biology","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/syb2.12091","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140750892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Excavation of gene markers associated with pancreatic ductal adenocarcinoma based on interrelationships of gene expression. 根据基因表达的相互关系挖掘与胰腺导管腺癌相关的基因标记。
IF 2.3 4区 生物学 Q2 Mathematics Pub Date : 2024-03-26 DOI: 10.1049/syb2.12090
Zhao-Yue Zhang, Zi-Jie Sun, Dong Gao, Yu-Duo Hao, Hao Lin, Fen Liu

Pancreatic ductal adenocarcinoma (PDAC) accounts for 95% of all pancreatic cancer cases, posing grave challenges to its diagnosis and treatment. Timely diagnosis is pivotal for improving patient survival, necessitating the discovery of precise biomarkers. An innovative approach was introduced to identify gene markers for precision PDAC detection. The core idea of our method is to discover gene pairs that display consistent opposite relative expression and differential co-expression patterns between PDAC and normal samples. Reversal gene pair analysis and differential partial correlation analysis were performed to determine reversal differential partial correlation (RDC) gene pairs. Using incremental feature selection, the authors refined the selected gene set and constructed a machine-learning model for PDAC recognition. As a result, the approach identified 10 RDC gene pairs. And the model could achieve a remarkable accuracy of 96.1% during cross-validation, surpassing gene expression-based models. The experiment on independent validation data confirmed the model's performance. Enrichment analysis revealed the involvement of these genes in essential biological processes and shed light on their potential roles in PDAC pathogenesis. Overall, the findings highlight the potential of these 10 RDC gene pairs as effective diagnostic markers for early PDAC detection, bringing hope for improving patient prognosis and survival.

胰腺导管腺癌(PDAC)占所有胰腺癌病例的 95%,给诊断和治疗带来了严峻挑战。及时诊断是提高患者生存率的关键,因此需要发现精确的生物标志物。我们引入了一种创新方法来识别基因标志物,以精确检测 PDAC。我们方法的核心思想是发现在 PDAC 和正常样本之间显示一致的相反相对表达和差异共表达模式的基因对。通过反转基因对分析和差异部分相关性分析来确定反转差异部分相关性(RDC)基因对。作者利用增量特征选择,完善了所选基因集,并构建了一个用于识别 PDAC 的机器学习模型。结果,该方法识别出了 10 个 RDC 基因对。在交叉验证过程中,该模型的准确率高达 96.1%,超过了基于基因表达的模型。独立验证数据实验证实了该模型的性能。富集分析揭示了这些基因参与了重要的生物学过程,并揭示了它们在 PDAC 发病机制中的潜在作用。总之,研究结果凸显了这10对RDC基因作为早期PDAC检测的有效诊断标记物的潜力,为改善患者预后和生存带来了希望。
{"title":"Excavation of gene markers associated with pancreatic ductal adenocarcinoma based on interrelationships of gene expression.","authors":"Zhao-Yue Zhang, Zi-Jie Sun, Dong Gao, Yu-Duo Hao, Hao Lin, Fen Liu","doi":"10.1049/syb2.12090","DOIUrl":"https://doi.org/10.1049/syb2.12090","url":null,"abstract":"<p><p>Pancreatic ductal adenocarcinoma (PDAC) accounts for 95% of all pancreatic cancer cases, posing grave challenges to its diagnosis and treatment. Timely diagnosis is pivotal for improving patient survival, necessitating the discovery of precise biomarkers. An innovative approach was introduced to identify gene markers for precision PDAC detection. The core idea of our method is to discover gene pairs that display consistent opposite relative expression and differential co-expression patterns between PDAC and normal samples. Reversal gene pair analysis and differential partial correlation analysis were performed to determine reversal differential partial correlation (RDC) gene pairs. Using incremental feature selection, the authors refined the selected gene set and constructed a machine-learning model for PDAC recognition. As a result, the approach identified 10 RDC gene pairs. And the model could achieve a remarkable accuracy of 96.1% during cross-validation, surpassing gene expression-based models. The experiment on independent validation data confirmed the model's performance. Enrichment analysis revealed the involvement of these genes in essential biological processes and shed light on their potential roles in PDAC pathogenesis. Overall, the findings highlight the potential of these 10 RDC gene pairs as effective diagnostic markers for early PDAC detection, bringing hope for improving patient prognosis and survival.</p>","PeriodicalId":50379,"journal":{"name":"IET Systems Biology","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140289489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IET Systems Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1