Analyzing unsteady flow of shear-thinning nanofluids over a cylinder with exponential stretching and shrinking: An artificial neural network approach

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Chaos Solitons & Fractals Pub Date : 2025-03-14 DOI:10.1016/j.chaos.2025.116301
Saeed Ehsan Awan , Fazal Badshah , Muhammad Awais , Nabeela Parveen , Zulqurnain Sabir , Zuhaib Ashfaq Khan
{"title":"Analyzing unsteady flow of shear-thinning nanofluids over a cylinder with exponential stretching and shrinking: An artificial neural network approach","authors":"Saeed Ehsan Awan ,&nbsp;Fazal Badshah ,&nbsp;Muhammad Awais ,&nbsp;Nabeela Parveen ,&nbsp;Zulqurnain Sabir ,&nbsp;Zuhaib Ashfaq Khan","doi":"10.1016/j.chaos.2025.116301","DOIUrl":null,"url":null,"abstract":"<div><div>Current study aims to implement a novel intelligent numerical computing framework by applying a computational artificial neural network designated with Bayesian regularization network (BRN) to underscore a comparative analysis for the impact of unsteady shear-thinning behavior of the flow of nanofluid through an exponentially stretching or shrinking cylinder. Transformed governing model of ordinary differential equations in cylindrical coordinates based on Buongiorno model is analyzed. The reference dataset for Buongiorno model is obtained by using Adam numerical solver against six scenarios with the variation of parameters namely, stretching/shrinking parameter, Weissenberg number, Reynold number, Brownian motion parameter, Prandtl number, and Lewis number. The acquired datasets are feed into a supervised computational framework utilizing BRN to approximate solutions for the unsteady shear-thinning behavior of flow system. The robustness of the stochastic process based on the BRN is validated through extensive simulation including convergence plots using the mean square errors, the performance of adaptive control parameters in the optimization algorithm, error distribution histograms and regression analysis. The optimal validation performance is observed in relation to epoch number index at epoch 621, 239, 548, 427, 580, 826 and 717 respective to all the scenarios. Further, observed mean squared errors (MSE) between target and output data of approximately 1.1383 × 10<sup>−11</sup>, 4.4409 × 10<sup>−11</sup>, 4.3824 × 10<sup>−12</sup>, 3.7145 × 10<sup>−12</sup>, 3.4385 × 10<sup>−13</sup>, 1.0341 × 10<sup>−11</sup>and 3.1188 × 10<sup>−11</sup>, recorded at times of 2 s, 1 s, 2 s, 2 s, 3 s, and 2 s respectively. These quantitative measures demonstrate minimal error margin which ensure the reliable alignment with numerical data.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"195 ","pages":"Article 116301"},"PeriodicalIF":5.6000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925003145","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Current study aims to implement a novel intelligent numerical computing framework by applying a computational artificial neural network designated with Bayesian regularization network (BRN) to underscore a comparative analysis for the impact of unsteady shear-thinning behavior of the flow of nanofluid through an exponentially stretching or shrinking cylinder. Transformed governing model of ordinary differential equations in cylindrical coordinates based on Buongiorno model is analyzed. The reference dataset for Buongiorno model is obtained by using Adam numerical solver against six scenarios with the variation of parameters namely, stretching/shrinking parameter, Weissenberg number, Reynold number, Brownian motion parameter, Prandtl number, and Lewis number. The acquired datasets are feed into a supervised computational framework utilizing BRN to approximate solutions for the unsteady shear-thinning behavior of flow system. The robustness of the stochastic process based on the BRN is validated through extensive simulation including convergence plots using the mean square errors, the performance of adaptive control parameters in the optimization algorithm, error distribution histograms and regression analysis. The optimal validation performance is observed in relation to epoch number index at epoch 621, 239, 548, 427, 580, 826 and 717 respective to all the scenarios. Further, observed mean squared errors (MSE) between target and output data of approximately 1.1383 × 10−11, 4.4409 × 10−11, 4.3824 × 10−12, 3.7145 × 10−12, 3.4385 × 10−13, 1.0341 × 10−11and 3.1188 × 10−11, recorded at times of 2 s, 1 s, 2 s, 2 s, 3 s, and 2 s respectively. These quantitative measures demonstrate minimal error margin which ensure the reliable alignment with numerical data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分析剪切稀化纳米流体在具有指数拉伸和收缩的圆柱体上的非稳态流动:人工神经网络方法
本研究旨在通过贝叶斯正则化网络(BRN)的计算人工神经网络实现一种新的智能数值计算框架,对纳米流体在指数拉伸或收缩圆柱体中的非定常剪切减薄行为的影响进行对比分析。分析了基于Buongiorno模型的圆柱坐标系下常微分方程的变换控制模型。利用Adam数值求解器对拉伸/收缩参数、Weissenberg数、reynolds数、brown运动参数、Prandtl数和Lewis数等6种参数变化的情况,得到了Buongiorno模型的参考数据集。获取的数据集被输入到一个有监督的计算框架中,利用BRN近似求解流动系统的非定常剪切-减薄行为。通过广泛的仿真验证了基于BRN的随机过程的鲁棒性,包括使用均方误差的收敛图,优化算法中自适应控制参数的性能,误差分布直方图和回归分析。在所有场景中,在epoch 621、239、548、427、580、826和717的epoch数索引中观察到最优的验证性能。此外,在2秒、1秒、2秒、2秒、3秒和2秒的记录时间内,目标数据与输出数据之间的均方误差(MSE)分别约为1.1383 × 10−11、4.4409 × 10−11、4.3824 × 10−12、3.7145 × 10−12、3.4385 × 10−13、1.0341 × 10−11和3.1188 × 10−11。这些定量测量证明了最小的误差范围,确保了与数值数据的可靠对准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
期刊最新文献
Multi-operational mode-locked fiber laser enabled by SMS filtering and nonlinear polarization rotation Self-sustaining chaotic characteristics of liquid crystal elastomer pendulum under different linear temperature fields Self-similarity of continental-scale Twitter communication networks promotes synchronous outbreaks of information spreading Community-level contagion among diverse financial assets Moderate intervention paradox in threshold-intensity regulated rock–paper–scissors competition systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1