{"title":"Revealing the reactant adsorption role of high-valence WO3 for boosting urea-assisted water splitting","authors":"Wenjie Jiang, Zhixiang Zhai, Xiaoyan Zhuo, Jia Wu, Boyao Feng, Tianqi Yu, Huan Wen, Shibin Yin","doi":"10.1016/j.cjsc.2025.100519","DOIUrl":null,"url":null,"abstract":"<div><div>Ni-based electrocatalysts are considered a promising choice for urea-assisted hydrogen production. However, its application remains challenging owing to the high occupancy of <em>d</em> orbital at the Ni site, which suppresses the reactant adsorption to achieve satisfactory urea oxidation reaction (UOR) and hydrogen evolution reaction (HER) activity. Herein, the WO<sub>3</sub> site with empty <em>d</em> orbital is introduced into Ni<sub>3</sub>S<sub>2</sub> to construct dual active sites for regulating the adsorption of reactive molecules. Experimental and theoretical calculations indicate that the electron transfer from Ni<sub>3</sub>S<sub>2</sub> to WO<sub>3</sub> forms electron-deficient Ni with sufficient empty <em>d</em> orbitals for optimizing urea/H<sub>2</sub>O adsorption and tuning the adsorption behavior of the amino and carbonyl groups in urea. Consequently, the Ni<sub>3</sub>S<sub>2</sub>-WO<sub>3</sub>/NF presents a remarkably low potential of 1.38 V to reach 10 mA cm<sup>−2</sup> for UOR-assisted HER. This work highlights the significance of constructing synergistic dual active sites toward developing advanced catalysts for urea-assisted hydrogen production.</div></div>","PeriodicalId":10151,"journal":{"name":"结构化学","volume":"44 3","pages":"Article 100519"},"PeriodicalIF":5.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"结构化学","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0254586125000091","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Ni-based electrocatalysts are considered a promising choice for urea-assisted hydrogen production. However, its application remains challenging owing to the high occupancy of d orbital at the Ni site, which suppresses the reactant adsorption to achieve satisfactory urea oxidation reaction (UOR) and hydrogen evolution reaction (HER) activity. Herein, the WO3 site with empty d orbital is introduced into Ni3S2 to construct dual active sites for regulating the adsorption of reactive molecules. Experimental and theoretical calculations indicate that the electron transfer from Ni3S2 to WO3 forms electron-deficient Ni with sufficient empty d orbitals for optimizing urea/H2O adsorption and tuning the adsorption behavior of the amino and carbonyl groups in urea. Consequently, the Ni3S2-WO3/NF presents a remarkably low potential of 1.38 V to reach 10 mA cm−2 for UOR-assisted HER. This work highlights the significance of constructing synergistic dual active sites toward developing advanced catalysts for urea-assisted hydrogen production.
期刊介绍:
Chinese Journal of Structural Chemistry “JIEGOU HUAXUE ”, an academic journal consisting of reviews, articles, communications and notes, provides a forum for the reporting and discussion of current novel research achievements in the fields of structural chemistry, crystallography, spectroscopy, quantum chemistry, pharmaceutical chemistry, biochemistry, material science, etc. Structural Chemistry has been indexed by SCI, CA, and some other prestigious publications.