Dose-dependent developmental fluoride exposure leads to neurotoxicity and impairs excitatory synapse development.

IF 4.8 2区 医学 Q1 TOXICOLOGY Archives of Toxicology Pub Date : 2025-03-14 DOI:10.1007/s00204-025-04003-5
Wenjin Qiu, Xiaoyu Wang, Shuling Zhang, Zhenting Zhang, Kaiju Zhang, Zhijuan Shao, Yubo Liu, Ruting Wei, Liangzhao Chu, Peng Luo
{"title":"Dose-dependent developmental fluoride exposure leads to neurotoxicity and impairs excitatory synapse development.","authors":"Wenjin Qiu, Xiaoyu Wang, Shuling Zhang, Zhenting Zhang, Kaiju Zhang, Zhijuan Shao, Yubo Liu, Ruting Wei, Liangzhao Chu, Peng Luo","doi":"10.1007/s00204-025-04003-5","DOIUrl":null,"url":null,"abstract":"<p><p>Developmental fluoride exposure has been implicated in cognitive deficits and neurotoxicity, yet the mechanisms underlying these effects remain unclear. Here, we investigated the dose- and time-dependent impacts of sodium fluoride (NaF) on neuronal morphology, viability, oxidative stress, and synaptic function using both in vitro and in vivo mouse models. Cultured primary embryonic mouse cortical neurons were exposed to varying concentrations of NaF (0-200 μg/ml). Acute exposure led to neuronal swelling at higher concentrations (≥ 50 μg/ml), while prolonged exposure reduced neuronal viability. Notably, NaF dose-dependently elevated reactive oxygen species (ROS) production, implicating oxidative stress as a key mechanism of fluoride-induced neurotoxicity. Synaptic development was also impaired, as evidenced by reduced density and co-localization of excitatory synapse markers with prolonged 2 μg/ml NaF exposure. To extend these in vitro findings, pregnant mice were exposed to 50 mg/L NaF in drinking water, and offspring brain functions were evaluated postnatally. Whole-cell patch-clamp recordings in layer V pyramidal neurons in the prefrontal cortex revealed reduced frequency and amplitude of miniature excitatory post-synaptic currents (mEPSCs), indicating impaired synaptic function. Morphological analysis showed decreased dendritic spine density and head diameter. These findings suggest that fluoride exposure during critical period of brain development disrupts synaptic integrity and function through excitatory synapse impairments.</p>","PeriodicalId":8329,"journal":{"name":"Archives of Toxicology","volume":" ","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00204-025-04003-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Developmental fluoride exposure has been implicated in cognitive deficits and neurotoxicity, yet the mechanisms underlying these effects remain unclear. Here, we investigated the dose- and time-dependent impacts of sodium fluoride (NaF) on neuronal morphology, viability, oxidative stress, and synaptic function using both in vitro and in vivo mouse models. Cultured primary embryonic mouse cortical neurons were exposed to varying concentrations of NaF (0-200 μg/ml). Acute exposure led to neuronal swelling at higher concentrations (≥ 50 μg/ml), while prolonged exposure reduced neuronal viability. Notably, NaF dose-dependently elevated reactive oxygen species (ROS) production, implicating oxidative stress as a key mechanism of fluoride-induced neurotoxicity. Synaptic development was also impaired, as evidenced by reduced density and co-localization of excitatory synapse markers with prolonged 2 μg/ml NaF exposure. To extend these in vitro findings, pregnant mice were exposed to 50 mg/L NaF in drinking water, and offspring brain functions were evaluated postnatally. Whole-cell patch-clamp recordings in layer V pyramidal neurons in the prefrontal cortex revealed reduced frequency and amplitude of miniature excitatory post-synaptic currents (mEPSCs), indicating impaired synaptic function. Morphological analysis showed decreased dendritic spine density and head diameter. These findings suggest that fluoride exposure during critical period of brain development disrupts synaptic integrity and function through excitatory synapse impairments.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Archives of Toxicology
Archives of Toxicology 医学-毒理学
CiteScore
11.60
自引率
4.90%
发文量
218
审稿时长
1.5 months
期刊介绍: Archives of Toxicology provides up-to-date information on the latest advances in toxicology. The journal places particular emphasis on studies relating to defined effects of chemicals and mechanisms of toxicity, including toxic activities at the molecular level, in humans and experimental animals. Coverage includes new insights into analysis and toxicokinetics and into forensic toxicology. Review articles of general interest to toxicologists are an additional important feature of the journal.
期刊最新文献
Molecular docking and molecular dynamics simulations revealed interaction mechanism of acetylcholinesterase with organophosphorus pesticides and their alternatives. Dose-dependent developmental fluoride exposure leads to neurotoxicity and impairs excitatory synapse development. Development of image analysis tool to evaluate Langerhans cell migration after exposure to isothiazolinones. Cell-based approaches for the mechanistic understanding of drug-induced cholestatic liver injury. Toxicity of ACP-105: a substance used as doping in sports: application of in silico methods for prediction of selected toxicological endpoints.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1