{"title":"MedKG: enabling drug discovery through a unified biomedical knowledge graph.","authors":"Madhavi Kumari, Rohit Chauhan, Prabha Garg","doi":"10.1007/s11030-025-11164-z","DOIUrl":null,"url":null,"abstract":"<p><p>Biomedical knowledge graphs have emerged as powerful tools for drug discovery, but existing platforms often suffer from outdated information, limited accessibility, and insufficient integration of complex data. This study presents MedKG, a comprehensive and continuously updated knowledge graph designed to address these challenges in precision medicine and drug discovery. MedKG integrates data from 35 authoritative sources, encompassing 34 node types and 79 relationships. A Continuous Integration/Continuous Update pipeline ensures MedKG remains current, addressing a critical limitation of static knowledge bases. The integration of molecular embeddings enhances semantic analysis capabilities, bridging the gap between chemical structures and biological entities. To demonstrate MedKG's utility, a novel hybrid Relational Graph Convolutional Network for disease-drug link prediction, MedLINK was developed and used in case studies on clinical trial data for disease drug link prediction. Furthermore, a web-based application with user-friendly APIs and visualization tools was built, making MedKG accessible to both technical and non-technical users, which is freely available at http://pitools.niper.ac.in/medkg/.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-025-11164-z","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Biomedical knowledge graphs have emerged as powerful tools for drug discovery, but existing platforms often suffer from outdated information, limited accessibility, and insufficient integration of complex data. This study presents MedKG, a comprehensive and continuously updated knowledge graph designed to address these challenges in precision medicine and drug discovery. MedKG integrates data from 35 authoritative sources, encompassing 34 node types and 79 relationships. A Continuous Integration/Continuous Update pipeline ensures MedKG remains current, addressing a critical limitation of static knowledge bases. The integration of molecular embeddings enhances semantic analysis capabilities, bridging the gap between chemical structures and biological entities. To demonstrate MedKG's utility, a novel hybrid Relational Graph Convolutional Network for disease-drug link prediction, MedLINK was developed and used in case studies on clinical trial data for disease drug link prediction. Furthermore, a web-based application with user-friendly APIs and visualization tools was built, making MedKG accessible to both technical and non-technical users, which is freely available at http://pitools.niper.ac.in/medkg/.
期刊介绍:
Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including:
combinatorial chemistry and parallel synthesis;
small molecule libraries;
microwave synthesis;
flow synthesis;
fluorous synthesis;
diversity oriented synthesis (DOS);
nanoreactors;
click chemistry;
multiplex technologies;
fragment- and ligand-based design;
structure/function/SAR;
computational chemistry and molecular design;
chemoinformatics;
screening techniques and screening interfaces;
analytical and purification methods;
robotics, automation and miniaturization;
targeted libraries;
display libraries;
peptides and peptoids;
proteins;
oligonucleotides;
carbohydrates;
natural diversity;
new methods of library formulation and deconvolution;
directed evolution, origin of life and recombination;
search techniques, landscapes, random chemistry and more;