Testes-specific protease 50 heightens stem-like properties and improves mitochondrial function in colorectal cancer

IF 5.2 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Life sciences Pub Date : 2025-03-12 DOI:10.1016/j.lfs.2025.123560
Feng Gao , Sichen Liu , Yue Sun , Chunlei Yu , Lihua Zheng , Luguo Sun , Guannan Wang , Ying Sun , Yongli Bao , Zhenbo Song , Xiaoguang Yang , Chao Ke
{"title":"Testes-specific protease 50 heightens stem-like properties and improves mitochondrial function in colorectal cancer","authors":"Feng Gao ,&nbsp;Sichen Liu ,&nbsp;Yue Sun ,&nbsp;Chunlei Yu ,&nbsp;Lihua Zheng ,&nbsp;Luguo Sun ,&nbsp;Guannan Wang ,&nbsp;Ying Sun ,&nbsp;Yongli Bao ,&nbsp;Zhenbo Song ,&nbsp;Xiaoguang Yang ,&nbsp;Chao Ke","doi":"10.1016/j.lfs.2025.123560","DOIUrl":null,"url":null,"abstract":"<div><h3>Aims</h3><div>The progression of colorectal cancer (CRC) is driven by a small subset of cancer stem-like cells (CSCs), and mitochondrial function is essential for maintaining their stemness. TSP50, a novel identified oncogene, has been found to promote cell proliferation in multiple cancer types. In this study, we detected the regulatory role of TSP50 in regulating CSC-like properties and mitochondrial mass in CRC.</div></div><div><h3>Materials and methods</h3><div>First, TSP50 expression and clinical relevance were analyzed <em>via</em> clinical databases and immunohistochemical (IHC). Subsequently, bioinformatic analyses, CRC cell lines, tumorsphere cultures, and mouse xenograft models were utilized to evaluate the relationship between TSP50 and CSC-like properties as well as mitochondrial mass. Finally, immunofluorescence, immunoprecipitation, and Western blotting were performed to dissect the regulatory mechanisms of TSP50, followed by rescue experiments conducted both <em>in vitro</em> and <em>in vivo</em>.</div></div><div><h3>Key findings</h3><div>TSP50 was overexpressed in CRC tissues, correlating with poor drug response and shorter overall survival (OS). Meanwhile, TSP50 was shown to enhance CSC-like properties in both CRC cells and mouse xenograft models, while concurrently increasing mitochondrial mass and reducing ROS levels, these effects were partially reversed by inhibition of the PI3K/AKT pathway. Mechanistic investigations revealed that TSP50-induced activation of PI3K/AKT signaling is primarily mediated by the enhanced catalytic activity of PI3K p110α subunit.</div></div><div><h3>Significance</h3><div>Collectively, TSP50 drives CRC malignancy by promoting CSC-like properties and enhancing mitochondrial function through PI3K/AKT signaling. These findings identify TSP50 as a potential therapeutic target for eliminating CSC-like cells and improving clinical outcomes in CRC treatment.</div></div>","PeriodicalId":18122,"journal":{"name":"Life sciences","volume":"370 ","pages":"Article 123560"},"PeriodicalIF":5.2000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024320525001948","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Aims

The progression of colorectal cancer (CRC) is driven by a small subset of cancer stem-like cells (CSCs), and mitochondrial function is essential for maintaining their stemness. TSP50, a novel identified oncogene, has been found to promote cell proliferation in multiple cancer types. In this study, we detected the regulatory role of TSP50 in regulating CSC-like properties and mitochondrial mass in CRC.

Materials and methods

First, TSP50 expression and clinical relevance were analyzed via clinical databases and immunohistochemical (IHC). Subsequently, bioinformatic analyses, CRC cell lines, tumorsphere cultures, and mouse xenograft models were utilized to evaluate the relationship between TSP50 and CSC-like properties as well as mitochondrial mass. Finally, immunofluorescence, immunoprecipitation, and Western blotting were performed to dissect the regulatory mechanisms of TSP50, followed by rescue experiments conducted both in vitro and in vivo.

Key findings

TSP50 was overexpressed in CRC tissues, correlating with poor drug response and shorter overall survival (OS). Meanwhile, TSP50 was shown to enhance CSC-like properties in both CRC cells and mouse xenograft models, while concurrently increasing mitochondrial mass and reducing ROS levels, these effects were partially reversed by inhibition of the PI3K/AKT pathway. Mechanistic investigations revealed that TSP50-induced activation of PI3K/AKT signaling is primarily mediated by the enhanced catalytic activity of PI3K p110α subunit.

Significance

Collectively, TSP50 drives CRC malignancy by promoting CSC-like properties and enhancing mitochondrial function through PI3K/AKT signaling. These findings identify TSP50 as a potential therapeutic target for eliminating CSC-like cells and improving clinical outcomes in CRC treatment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Life sciences
Life sciences 医学-药学
CiteScore
12.20
自引率
1.60%
发文量
841
审稿时长
6 months
期刊介绍: Life Sciences is an international journal publishing articles that emphasize the molecular, cellular, and functional basis of therapy. The journal emphasizes the understanding of mechanism that is relevant to all aspects of human disease and translation to patients. All articles are rigorously reviewed. The Journal favors publication of full-length papers where modern scientific technologies are used to explain molecular, cellular and physiological mechanisms. Articles that merely report observations are rarely accepted. Recommendations from the Declaration of Helsinki or NIH guidelines for care and use of laboratory animals must be adhered to. Articles should be written at a level accessible to readers who are non-specialists in the topic of the article themselves, but who are interested in the research. The Journal welcomes reviews on topics of wide interest to investigators in the life sciences. We particularly encourage submission of brief, focused reviews containing high-quality artwork and require the use of mechanistic summary diagrams.
期刊最新文献
SIRT2 alleviates pre-eclampsia via prompting mitochondrial biogenesis and function. ROS-mediated ferroptosis and pyroptosis in cardiomyocytes: An update Edaravone targets PDGFRβ to attenuate VSMC phenotypic transition. MMP3 as a new target of Danshensu/tetramethylpyrazine derivative for attenuating cardiac fibrosis post-myocardial infarction. Nanocellulose dysregulated glucose homeostasis in female mice on a Western diet: The role of gut microbiome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1