Giant Strain-Induced Spin Splitting Effect in MnTe, a g-Wave Altermagnetic Semiconductor.

IF 8.1 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Physical review letters Pub Date : 2025-02-28 DOI:10.1103/PhysRevLett.134.086701
K D Belashchenko
{"title":"Giant Strain-Induced Spin Splitting Effect in MnTe, a g-Wave Altermagnetic Semiconductor.","authors":"K D Belashchenko","doi":"10.1103/PhysRevLett.134.086701","DOIUrl":null,"url":null,"abstract":"<p><p>Hexagonal MnTe is an altermagnetic semiconductor with g-wave symmetry of spin polarization in momentum space. In the nonrelativistic limit, this symmetry mandates that electric current flowing in any crystallographic direction is unpolarized. However, here I show that elastic strain is effective in inducing the spin splitting effect in MnTe. For this analysis, a spin-orbit-coupled k·p Hamiltonian for the valence band maximum at the A point is derived and fitted to eigenvalues calculated from first principles. The spin splitting angle is calculated using the Boltzmann approach in the relaxation-time approximation. The spin splitting gauge factor exceeds 30 near the valence band maximum. Thus, with suitable substrate engineering, MnTe can be used as an efficient source and detector of spin current in spintronic devices. Proper inclusion of the Rashba-Dresselhaus spin-orbit coupling is crucial for the correct description of the transport properties of MnTe.</p>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"134 8","pages":"086701"},"PeriodicalIF":8.1000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevLett.134.086701","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hexagonal MnTe is an altermagnetic semiconductor with g-wave symmetry of spin polarization in momentum space. In the nonrelativistic limit, this symmetry mandates that electric current flowing in any crystallographic direction is unpolarized. However, here I show that elastic strain is effective in inducing the spin splitting effect in MnTe. For this analysis, a spin-orbit-coupled k·p Hamiltonian for the valence band maximum at the A point is derived and fitted to eigenvalues calculated from first principles. The spin splitting angle is calculated using the Boltzmann approach in the relaxation-time approximation. The spin splitting gauge factor exceeds 30 near the valence band maximum. Thus, with suitable substrate engineering, MnTe can be used as an efficient source and detector of spin current in spintronic devices. Proper inclusion of the Rashba-Dresselhaus spin-orbit coupling is crucial for the correct description of the transport properties of MnTe.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical review letters
Physical review letters 物理-物理:综合
CiteScore
16.50
自引率
7.00%
发文量
2673
审稿时长
2.2 months
期刊介绍: Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics: General physics, including statistical and quantum mechanics and quantum information Gravitation, astrophysics, and cosmology Elementary particles and fields Nuclear physics Atomic, molecular, and optical physics Nonlinear dynamics, fluid dynamics, and classical optics Plasma and beam physics Condensed matter and materials physics Polymers, soft matter, biological, climate and interdisciplinary physics, including networks
期刊最新文献
New Method for the Astrometric Direct Detection of Ultralight Dark Matter Engineering Dipole-Dipole Couplings for Enhanced Cooperative Light-Matter Interactions One-Loop N -Point Correlators in Pure Gravity Coherence of Symmetry-Protected Rotational Qubits in Cold Polyatomic Molecules Hybrid SO(10) Axion Model without Quality Problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1