{"title":"Kolmogorov Scaling in Turbulent 2D Bose-Einstein Condensates.","authors":"M Zhao, J Tao, I B Spielman","doi":"10.1103/PhysRevLett.134.083402","DOIUrl":null,"url":null,"abstract":"<p><p>We investigated turbulence in 2D atomic Bose-Einstein condensates (BECs) using a minimally destructive, impurity injection technique analogous to particle image velocimetry in conventional fluids. Our approach transfers small regions of the BEC into a different hyperfine state and tracks their displacement, ultimately yielding the velocity field. This allows us to quantify turbulence in the same way as is conventional in fluid dynamics in terms of velocity-velocity correlation functions, called velocity structure functions, that obey Kolmogorov scaling laws. Furthermore, the velocity increments show a clear fat-tail non-Gaussian distribution that results from intermittency corrections to the initial \"K41\" Kolmogorov theory. Our observations are fully consistent with the later \"KO62\" description. These results are validated by a 2D dissipative Gross-Pitaevskii simulation.</p>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"134 8","pages":"083402"},"PeriodicalIF":8.1000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevLett.134.083402","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We investigated turbulence in 2D atomic Bose-Einstein condensates (BECs) using a minimally destructive, impurity injection technique analogous to particle image velocimetry in conventional fluids. Our approach transfers small regions of the BEC into a different hyperfine state and tracks their displacement, ultimately yielding the velocity field. This allows us to quantify turbulence in the same way as is conventional in fluid dynamics in terms of velocity-velocity correlation functions, called velocity structure functions, that obey Kolmogorov scaling laws. Furthermore, the velocity increments show a clear fat-tail non-Gaussian distribution that results from intermittency corrections to the initial "K41" Kolmogorov theory. Our observations are fully consistent with the later "KO62" description. These results are validated by a 2D dissipative Gross-Pitaevskii simulation.
期刊介绍:
Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics:
General physics, including statistical and quantum mechanics and quantum information
Gravitation, astrophysics, and cosmology
Elementary particles and fields
Nuclear physics
Atomic, molecular, and optical physics
Nonlinear dynamics, fluid dynamics, and classical optics
Plasma and beam physics
Condensed matter and materials physics
Polymers, soft matter, biological, climate and interdisciplinary physics, including networks