Symmetry Induced Enhancement in Finite-Time Thermodynamic Trade-Off Relations.

IF 8.1 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Physical review letters Pub Date : 2025-02-28 DOI:10.1103/PhysRevLett.134.080401
Ken Funo, Hiroyasu Tajima
{"title":"Symmetry Induced Enhancement in Finite-Time Thermodynamic Trade-Off Relations.","authors":"Ken Funo, Hiroyasu Tajima","doi":"10.1103/PhysRevLett.134.080401","DOIUrl":null,"url":null,"abstract":"<p><p>Symmetry imposes constraints on open quantum systems, affecting the dissipative properties in nonequilibrium processes. Superradiance is a typical example in which the decay rate of the system is enhanced via a collective system-bath coupling that respects permutation symmetry. Such a model has also been applied to heat engines. However, a generic framework that addresses the impact of symmetry in finite-time thermodynamics is not well established. Here, we show a symmetry-based framework that describes the fundamental limit of collective enhancement in finite-time thermodynamics. Specifically, we derive a general upper bound on the average jump rate, which quantifies the fundamental speed set by thermodynamic speed limits and trade-off relations. We identify the symmetry condition that achieves the obtained bound, and explicitly construct an open quantum system model that goes beyond the enhancement realized by the conventional superradiance model.</p>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"134 8","pages":"080401"},"PeriodicalIF":8.1000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevLett.134.080401","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Symmetry imposes constraints on open quantum systems, affecting the dissipative properties in nonequilibrium processes. Superradiance is a typical example in which the decay rate of the system is enhanced via a collective system-bath coupling that respects permutation symmetry. Such a model has also been applied to heat engines. However, a generic framework that addresses the impact of symmetry in finite-time thermodynamics is not well established. Here, we show a symmetry-based framework that describes the fundamental limit of collective enhancement in finite-time thermodynamics. Specifically, we derive a general upper bound on the average jump rate, which quantifies the fundamental speed set by thermodynamic speed limits and trade-off relations. We identify the symmetry condition that achieves the obtained bound, and explicitly construct an open quantum system model that goes beyond the enhancement realized by the conventional superradiance model.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有限时间热力学权衡关系中的对称性诱导增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical review letters
Physical review letters 物理-物理:综合
CiteScore
16.50
自引率
7.00%
发文量
2673
审稿时长
2.2 months
期刊介绍: Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics: General physics, including statistical and quantum mechanics and quantum information Gravitation, astrophysics, and cosmology Elementary particles and fields Nuclear physics Atomic, molecular, and optical physics Nonlinear dynamics, fluid dynamics, and classical optics Plasma and beam physics Condensed matter and materials physics Polymers, soft matter, biological, climate and interdisciplinary physics, including networks
期刊最新文献
New Method for the Astrometric Direct Detection of Ultralight Dark Matter Engineering Dipole-Dipole Couplings for Enhanced Cooperative Light-Matter Interactions One-Loop N -Point Correlators in Pure Gravity Coherence of Symmetry-Protected Rotational Qubits in Cold Polyatomic Molecules Hybrid SO(10) Axion Model without Quality Problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1