Chenxi Zhao, Shengtao Cui, Tongrui Li, Yunbo Wu, Mengruizhe Kong, Wei Bai, Kai Li, Yi Liu, Zhanfeng Liu, Zhengming Shang, Zhe Sun, Chong Xiao, Yi Xie
{"title":"Unexpected 18-Fold Overlapped Feathery Fermi Pockets in Typical Thermoelectric Bi_{0.5}Sb_{1.5}Te_{3}.","authors":"Chenxi Zhao, Shengtao Cui, Tongrui Li, Yunbo Wu, Mengruizhe Kong, Wei Bai, Kai Li, Yi Liu, Zhanfeng Liu, Zhengming Shang, Zhe Sun, Chong Xiao, Yi Xie","doi":"10.1103/PhysRevLett.134.086401","DOIUrl":null,"url":null,"abstract":"<p><p>Bi_{0.5}Sb_{1.5}Te_{3} is the most widely used p-type commercial thermoelectric materials over six decades, yet its complex electronic structure remains uncertain especially in band degeneracy and k_{z} dispersions. Here we show an unexpected band structure of 18-fold overlapped feathery Fermi pockets through substantial angle-resolved photoelectron spectroscopy data. Complemented with transport tests, we suggest that the high performance originates in the cooperation of four electronic features-momentum overlap of Fermi pockets, 18-fold band degeneracy, ultrasharp k_{y} dispersions, and heavy k_{z} bands. This cooperation of band features proposes a new paradigm for promising thermoelectrics.</p>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"134 8","pages":"086401"},"PeriodicalIF":8.1000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevLett.134.086401","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Bi_{0.5}Sb_{1.5}Te_{3} is the most widely used p-type commercial thermoelectric materials over six decades, yet its complex electronic structure remains uncertain especially in band degeneracy and k_{z} dispersions. Here we show an unexpected band structure of 18-fold overlapped feathery Fermi pockets through substantial angle-resolved photoelectron spectroscopy data. Complemented with transport tests, we suggest that the high performance originates in the cooperation of four electronic features-momentum overlap of Fermi pockets, 18-fold band degeneracy, ultrasharp k_{y} dispersions, and heavy k_{z} bands. This cooperation of band features proposes a new paradigm for promising thermoelectrics.
期刊介绍:
Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics:
General physics, including statistical and quantum mechanics and quantum information
Gravitation, astrophysics, and cosmology
Elementary particles and fields
Nuclear physics
Atomic, molecular, and optical physics
Nonlinear dynamics, fluid dynamics, and classical optics
Plasma and beam physics
Condensed matter and materials physics
Polymers, soft matter, biological, climate and interdisciplinary physics, including networks