Paquinimod‐hydrogel hybrid microneedle array patch alleviates hypertrophic scar via inhibiting M1 polarization

IF 6.1 2区 医学 Q1 ENGINEERING, BIOMEDICAL Bioengineering & Translational Medicine Pub Date : 2025-03-15 DOI:10.1002/btm2.70016
Zihui Zhang, Peng Wang, Hengdeng Liu, Hanwen Wang, Miao Zhen, Xuefeng He, Suyue Gao, Juntao Xie, Julin Xie
{"title":"Paquinimod‐hydrogel hybrid microneedle array patch alleviates hypertrophic scar via inhibiting M1 polarization","authors":"Zihui Zhang, Peng Wang, Hengdeng Liu, Hanwen Wang, Miao Zhen, Xuefeng He, Suyue Gao, Juntao Xie, Julin Xie","doi":"10.1002/btm2.70016","DOIUrl":null,"url":null,"abstract":"Hypertrophic scar (HS) is one of the most common complications of skin injuries, with a lack of effective therapeutic approaches to date. Most current research has focused on the dysfunction of hypertrophic scar fibroblasts (HSFBs) and dermal vascular endothelial cells (HDVECs), neglecting the crucial role of the inflammatory microenvironment that causes them to be abnormal. In this study, we first discovered and validated that the S100A8/9 specific inhibitor Paquinimod could inhibit macrophage polarization toward M1, and further suppress the proliferation, migration, collagen formation, and angiogenesis of HSFBs and HDVECs in vitro. This mechanism has also been validated in a rat model of HS. Then, we developed a good biocompatibility and penetrability Paquinimod‐Hydrogel Hybrid Microneedle Array Patch (PHMAP) for HS treatment. With the advantages of excellent penetrability, surface sealing, sustained release, and precise uniform distribution, PHMAP exhibited superior therapeutic efficacy over intravenous and intradermal injections. These results suggest that PHMAP can be a promising and advanced solution for HS prevention and therapies.","PeriodicalId":9263,"journal":{"name":"Bioengineering & Translational Medicine","volume":"19 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering & Translational Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/btm2.70016","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Hypertrophic scar (HS) is one of the most common complications of skin injuries, with a lack of effective therapeutic approaches to date. Most current research has focused on the dysfunction of hypertrophic scar fibroblasts (HSFBs) and dermal vascular endothelial cells (HDVECs), neglecting the crucial role of the inflammatory microenvironment that causes them to be abnormal. In this study, we first discovered and validated that the S100A8/9 specific inhibitor Paquinimod could inhibit macrophage polarization toward M1, and further suppress the proliferation, migration, collagen formation, and angiogenesis of HSFBs and HDVECs in vitro. This mechanism has also been validated in a rat model of HS. Then, we developed a good biocompatibility and penetrability Paquinimod‐Hydrogel Hybrid Microneedle Array Patch (PHMAP) for HS treatment. With the advantages of excellent penetrability, surface sealing, sustained release, and precise uniform distribution, PHMAP exhibited superior therapeutic efficacy over intravenous and intradermal injections. These results suggest that PHMAP can be a promising and advanced solution for HS prevention and therapies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioengineering & Translational Medicine
Bioengineering & Translational Medicine Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
8.40
自引率
4.10%
发文量
150
审稿时长
12 weeks
期刊介绍: Bioengineering & Translational Medicine, an official, peer-reviewed online open-access journal of the American Institute of Chemical Engineers (AIChE) and the Society for Biological Engineering (SBE), focuses on how chemical and biological engineering approaches drive innovative technologies and solutions that impact clinical practice and commercial healthcare products.
期刊最新文献
Transport physics‐informed reinforcement learning agents deployed in standalone infusion pumps for managing multidrug delivery in critical care Correction to “Drug cross‐linking electrospun fiber for effective infected wound healing” Paquinimod‐hydrogel hybrid microneedle array patch alleviates hypertrophic scar via inhibiting M1 polarization Micrometer‐scale tPA beads amplify plasmin generation for enhanced thrombolytic therapy In vivo evaluation of decellularized skeletal muscle matrices for skeletal muscle repair: A systematic review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1