R. Thomson, C. Le, L. Wang, D.J. Batstone, Y. Zhou, A. Oehmen
{"title":"Higher Order Volatile Fatty Acid Metabolism and Atypical Polyhydroxyalkanoate Production in Fermentation-Enhanced Biological Phosphorus Removal","authors":"R. Thomson, C. Le, L. Wang, D.J. Batstone, Y. Zhou, A. Oehmen","doi":"10.1016/j.watres.2025.123503","DOIUrl":null,"url":null,"abstract":"Enhanced biological phosphorus removal (EBPR) is an established wastewater treatment process, but its wider implementation has been limited by factors like high temperature and low carbon availability. Fermentation-enhanced EBPR (F-EBPR) processes have shown promise in addressing these limitations, but the underlying mechanisms are not fully understood. This study investigates the metabolism of higher order (C<sub>4-5</sub>) volatile fatty acids (VFAs) in F-EBPR systems using a combination of carbon isotope labelling and shotgun metagenomic sequencing analyses. Results show that butyrate (HBu) uptake leads to the formation of both typical (C<sub>4-5</sub>) and atypical (C<sub>6+</sub>) polyhydroxyalkanoates (PHAs) through a combination of β-oxidation and standard condensation pathways, while the putative role of HBu oxidisers were identified relative to substrate composition in F-EBPR processes. Metagenomic analysis reveals the presence of genes required for higher order VFA metabolism in both polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs). This study also highlights the limitations of current models in describing F-EBPR processes and emphasises the need for improved models that account for higher order VFA metabolism and microbial community dynamics.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"9 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.watres.2025.123503","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Enhanced biological phosphorus removal (EBPR) is an established wastewater treatment process, but its wider implementation has been limited by factors like high temperature and low carbon availability. Fermentation-enhanced EBPR (F-EBPR) processes have shown promise in addressing these limitations, but the underlying mechanisms are not fully understood. This study investigates the metabolism of higher order (C4-5) volatile fatty acids (VFAs) in F-EBPR systems using a combination of carbon isotope labelling and shotgun metagenomic sequencing analyses. Results show that butyrate (HBu) uptake leads to the formation of both typical (C4-5) and atypical (C6+) polyhydroxyalkanoates (PHAs) through a combination of β-oxidation and standard condensation pathways, while the putative role of HBu oxidisers were identified relative to substrate composition in F-EBPR processes. Metagenomic analysis reveals the presence of genes required for higher order VFA metabolism in both polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs). This study also highlights the limitations of current models in describing F-EBPR processes and emphasises the need for improved models that account for higher order VFA metabolism and microbial community dynamics.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.