Gradient purification of surface water and ultrafiltration membrane fouling mitigation based on Fe(VI) multifunctional integration characteristics: Is a sedimentation unit necessary?
{"title":"Gradient purification of surface water and ultrafiltration membrane fouling mitigation based on Fe(VI) multifunctional integration characteristics: Is a sedimentation unit necessary?","authors":"Kunyu Chen, Jie Wang, Xiaojiang Huang, Ruimin Mu, Congwei Luo, Daoji Wu, Jing Liu, Jinsuo Lu, Xiaoxiang Cheng","doi":"10.1016/j.watres.2025.123508","DOIUrl":null,"url":null,"abstract":"Ferrate (Fe(VI)) can provide oxidation and in-situ coagulation/adsorption for the removal of emerging contaminants and natural organic matter, and can be used in conjunction with ultrafiltration (UF) membrane to enhance the removal of composite contaminants and mitigate UF membrane fouling. Based on the Fe(VI) multifunctional integration characteristics, the study objectively and comprehensively verified the gradient purification of surface water and the UF membrane fouling mitigation by Fe(VI)-UF and sulfite (S(IV)) activated Fe(VI) (S(IV)/Fe(VI))-UF, elucidated the effect of sedimentation unit on the UF mechanism and the membrane fouling behaviors, and revealed the free energy changes throughout the UF process. The experimental results demonstrated that S(IV)/Fe(VI)-UF showed superior purification performance and UF membrane fouling mitigation than Fe(VI)-UF. S(IV)/Fe(VI)-UF achieved removals of sulfamethoxazole, DOC, and UV<sub>254</sub> up to 77.73%, 61.86%, and 86.33%, and was able to significantly mitigate UF membrane fouling by prolonging the transition stage and positively shifting the interfacial free energy. Innovatively, the absence of a sedimentation unit was found to adversely affect the initial stages of Fe(VI)-UF and S(IV)/Fe(VI)-UF by lowering the energy barriers, while negligibly affecting cake filtration. Additionally, the water treatment cost of S(IV)/Fe(VI) was 0.3 yuan per ton, indicating notable economic benefits and engineering potential. While deepening the understanding of Fe(VI) multifunctional integration characteristics, the above results provided theoretical and data support for S(IV)/Fe(VI)-UF and Fe(VI)-UF treatment of surface water, and enriched the application scenarios of Fe(VI)-related technologies.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"14 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.watres.2025.123508","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Ferrate (Fe(VI)) can provide oxidation and in-situ coagulation/adsorption for the removal of emerging contaminants and natural organic matter, and can be used in conjunction with ultrafiltration (UF) membrane to enhance the removal of composite contaminants and mitigate UF membrane fouling. Based on the Fe(VI) multifunctional integration characteristics, the study objectively and comprehensively verified the gradient purification of surface water and the UF membrane fouling mitigation by Fe(VI)-UF and sulfite (S(IV)) activated Fe(VI) (S(IV)/Fe(VI))-UF, elucidated the effect of sedimentation unit on the UF mechanism and the membrane fouling behaviors, and revealed the free energy changes throughout the UF process. The experimental results demonstrated that S(IV)/Fe(VI)-UF showed superior purification performance and UF membrane fouling mitigation than Fe(VI)-UF. S(IV)/Fe(VI)-UF achieved removals of sulfamethoxazole, DOC, and UV254 up to 77.73%, 61.86%, and 86.33%, and was able to significantly mitigate UF membrane fouling by prolonging the transition stage and positively shifting the interfacial free energy. Innovatively, the absence of a sedimentation unit was found to adversely affect the initial stages of Fe(VI)-UF and S(IV)/Fe(VI)-UF by lowering the energy barriers, while negligibly affecting cake filtration. Additionally, the water treatment cost of S(IV)/Fe(VI) was 0.3 yuan per ton, indicating notable economic benefits and engineering potential. While deepening the understanding of Fe(VI) multifunctional integration characteristics, the above results provided theoretical and data support for S(IV)/Fe(VI)-UF and Fe(VI)-UF treatment of surface water, and enriched the application scenarios of Fe(VI)-related technologies.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.