Insights into ammonia oxidation reforming over bimetallic Ni–Ru nanocatalysts for enhanced H2 production at low exhaust temperature of marine engines: Thermodynamic, experimental, and DFT investigation

IF 8.3 2区 工程技术 Q1 CHEMISTRY, PHYSICAL International Journal of Hydrogen Energy Pub Date : 2025-03-17 DOI:10.1016/j.ijhydene.2025.03.185
Yi Zhang, Gesheng Li, Jian Li, Minghao Li, Minrui Liu, Jiajia Wu, Maoqiang Jiang, Zunhua Zhang
{"title":"Insights into ammonia oxidation reforming over bimetallic Ni–Ru nanocatalysts for enhanced H2 production at low exhaust temperature of marine engines: Thermodynamic, experimental, and DFT investigation","authors":"Yi Zhang,&nbsp;Gesheng Li,&nbsp;Jian Li,&nbsp;Minghao Li,&nbsp;Minrui Liu,&nbsp;Jiajia Wu,&nbsp;Maoqiang Jiang,&nbsp;Zunhua Zhang","doi":"10.1016/j.ijhydene.2025.03.185","DOIUrl":null,"url":null,"abstract":"<div><div>Addressing challenges associated with efficient H<sub>2</sub> generation from NH<sub>3</sub> at low temperature holds immense significance for ammonia application in marine engines. This work employs the thermodynamic model of NH<sub>3</sub> decomposition to elucidate chemical reaction equilibrium limitations across varying temperature and pressure conditions, defining optimal catalyst boundaries. Subsequently, the vacuum-impregnation-calcination method is utilized to synthesize a series of nanocatalysts loaded with Ni and Ru. The evaluation results reveal that Ru catalysts exhibit superior NH<sub>3</sub> decomposition performance compared to Ni catalysts at low temperature. Ammonia conversion (<em>X</em><sub>NH3</sub>) follows the trend of initially rising and subsequently declining with increasing Ru loading, attaining its optimum at 2 %. Notably, Ni–Ru bimetallic catalysts demonstrate excellent performance, and catalytic activities decrease in the order of 3Ni0.5Ru/Al<sub>2</sub>O<sub>3</sub> &gt; 6Ni0.5Ru/Al<sub>2</sub>O<sub>3</sub> &gt; 0.5Ru/Al<sub>2</sub>O<sub>3</sub> &gt; 6Ni/Al<sub>2</sub>O<sub>3</sub> &gt; 3Ni/Al<sub>2</sub>O<sub>3</sub>. For ammonia composite oxidative reforming reaction, DFT calculations and experimental results show that maintaining optimal A/O (NH<sub>3</sub> to O<sub>2</sub>) ratio and GHSV under engine exhaust temperature conditions is essential for achieving preferable hydrogen yield (<em>Y</em><sub>H2</sub>). It should be emphasized that 3Ni0.5Ru/Al<sub>2</sub>O<sub>3</sub> outperforms pure Ru catalysts in oxidative reforming process, achieving <em>Y</em><sub>H2</sub> of 57.3 % at 10000 h<sup>−1</sup>, 400 °C and A/O = 4. This is ascribed to the fact that Ni component can act as the additional effective active site in ammonia oxidation reaction, and the synergistic effect of Ni–Ru bimetal have the positive impact on H<sub>2</sub> production. Inspiringly, 3Ni0.5Ru/Al<sub>2</sub>O<sub>3</sub> shows commendable stability within 50 h, with only slight Ni and Ru valence fluctuations. Moreover, bimetallic catalyst sustains substantial <em>Y</em><sub>H2</sub> for oxidative reforming reaction at 300 °C.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"117 ","pages":"Pages 255-270"},"PeriodicalIF":8.3000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319925012996","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Addressing challenges associated with efficient H2 generation from NH3 at low temperature holds immense significance for ammonia application in marine engines. This work employs the thermodynamic model of NH3 decomposition to elucidate chemical reaction equilibrium limitations across varying temperature and pressure conditions, defining optimal catalyst boundaries. Subsequently, the vacuum-impregnation-calcination method is utilized to synthesize a series of nanocatalysts loaded with Ni and Ru. The evaluation results reveal that Ru catalysts exhibit superior NH3 decomposition performance compared to Ni catalysts at low temperature. Ammonia conversion (XNH3) follows the trend of initially rising and subsequently declining with increasing Ru loading, attaining its optimum at 2 %. Notably, Ni–Ru bimetallic catalysts demonstrate excellent performance, and catalytic activities decrease in the order of 3Ni0.5Ru/Al2O3 > 6Ni0.5Ru/Al2O3 > 0.5Ru/Al2O3 > 6Ni/Al2O3 > 3Ni/Al2O3. For ammonia composite oxidative reforming reaction, DFT calculations and experimental results show that maintaining optimal A/O (NH3 to O2) ratio and GHSV under engine exhaust temperature conditions is essential for achieving preferable hydrogen yield (YH2). It should be emphasized that 3Ni0.5Ru/Al2O3 outperforms pure Ru catalysts in oxidative reforming process, achieving YH2 of 57.3 % at 10000 h−1, 400 °C and A/O = 4. This is ascribed to the fact that Ni component can act as the additional effective active site in ammonia oxidation reaction, and the synergistic effect of Ni–Ru bimetal have the positive impact on H2 production. Inspiringly, 3Ni0.5Ru/Al2O3 shows commendable stability within 50 h, with only slight Ni and Ru valence fluctuations. Moreover, bimetallic catalyst sustains substantial YH2 for oxidative reforming reaction at 300 °C.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在船用发动机低排气温度下,通过双金属Ni-Ru纳米催化剂提高H2产量的氨氧化重整研究:热力学、实验和DFT研究
解决与低温下NH3高效制氢相关的挑战对于氨在船用发动机中的应用具有重要意义。本研究采用NH3分解的热力学模型来阐明不同温度和压力条件下的化学反应平衡限制,确定最佳催化剂边界。随后,采用真空浸渍-煅烧法制备了一系列负载Ni和Ru的纳米催化剂。评价结果表明,Ru催化剂在低温下的NH3分解性能优于Ni催化剂。随着Ru负荷的增加,氨转化率(XNH3)呈现先上升后下降的趋势,在2%时达到最佳。值得注意的是,Ni-Ru双金属催化剂表现出优异的性能,催化活性依次为:3Ni0.5Ru/Al2O3 >;6 ni0.5ru /氧化铝比;0.5俄文/氧化铝祝辞6 ni /氧化铝祝辞3 ni /氧化铝。对于氨复合氧化重整反应,DFT计算和实验结果表明,在发动机排气温度条件下,保持最佳的A/O (NH3 to O2)比和GHSV是获得较好的产氢率(YH2)的关键。需要强调的是,在氧化重整过程中,3Ni0.5Ru/Al2O3优于纯Ru催化剂,在10000 h - 1400℃、A/O = 4条件下,YH2达到57.3%。这是因为在氨氧化反应中,Ni组分可以作为额外的有效活性位点,并且Ni - ru双金属的协同作用对H2的生成有积极的影响。令人鼓舞的是,3Ni0.5Ru/Al2O3在50 h内表现出良好的稳定性,只有轻微的Ni和Ru价波动。此外,双金属催化剂在300℃的氧化重整反应中维持了大量的YH2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Hydrogen Energy
International Journal of Hydrogen Energy 工程技术-环境科学
CiteScore
13.50
自引率
25.00%
发文量
3502
审稿时长
60 days
期刊介绍: The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc. The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.
期刊最新文献
Effects of wire mesh on hydrogen explosion in narrow and long pipe Distinct microstructural and mechanical responses of Ti-6321 alloy to gaseous and electrochemical hydrogen charging Are the ohmic and polarization resistances of solid oxide electrochemical cells independent from each other? Unveiling the enhanced hydrogen evolution reaction mechanism of CoS2@MoS2 heterojunction catalyst: Mechanism, DFT calculation Coupled effects of initial temperature and equivalence ratio on flame propagation and explosion characteristics of hydrogen–air mixtures in a closed duct
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1