Molecular dynamics method to predict the effects of temperature and strain rate on mechanical properties of Aluminum/Copper superalloy

IF 2.1 4区 化学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Molecular Modeling Pub Date : 2025-03-17 DOI:10.1007/s00894-025-06341-8
Mostafa Yazdani, Aazam Ghassemi, Mohamad Shahgholi, Javad Jafari Fesharaki, Seyed Ali Galehdari
{"title":"Molecular dynamics method to predict the effects of temperature and strain rate on mechanical properties of Aluminum/Copper superalloy","authors":"Mostafa Yazdani,&nbsp;Aazam Ghassemi,&nbsp;Mohamad Shahgholi,&nbsp;Javad Jafari Fesharaki,&nbsp;Seyed Ali Galehdari","doi":"10.1007/s00894-025-06341-8","DOIUrl":null,"url":null,"abstract":"<div><p>Metal alloys are engineered materials designed to enhance mechanical performance. Achieving optimal mechanical properties through alloy composition has been the focus of extensive research. This study employs the meshless molecular dynamics method to investigate the influence of temperature, strain rate, and copper content on the mechanical properties of Aluminum/Copper (Al-Cu) superalloy. The research focuses on the variation of copper content from 1 to 20%, temperature from 300 to 600 K, and strain rates between 0.001 ps<sup>−1</sup> and 0.01 ps<sup>−1</sup>, assessing their impact on the ultimate tensile strength (UTS) and elastic modulus of the alloy. The results show a significant enhancement in both UTS and elastic modulus with increasing copper content, with the UTS increasing by 359% and the elastic modulus by 281% when copper content rises from 1 to 20%. In contrast, increasing the temperature from 300 to 600 K results in a 31% reduction in UTS and an 18.9% decrease in elastic modulus, highlighting the sensitivity of these properties to thermal effects. Additionally, higher strain rates were found to improve both UTS and elastic modulus, with an 11.95% increase in UTS and an 8.34% increase in elastic modulus at the highest strain rate (0.01 ps<sup>−1</sup>). These findings demonstrate the critical role of alloy composition, temperature, and strain rate in tailoring the mechanical properties of Al-Cu alloys, providing insights for optimizing the material for high-performance applications.</p></div>","PeriodicalId":651,"journal":{"name":"Journal of Molecular Modeling","volume":"31 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Modeling","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00894-025-06341-8","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Metal alloys are engineered materials designed to enhance mechanical performance. Achieving optimal mechanical properties through alloy composition has been the focus of extensive research. This study employs the meshless molecular dynamics method to investigate the influence of temperature, strain rate, and copper content on the mechanical properties of Aluminum/Copper (Al-Cu) superalloy. The research focuses on the variation of copper content from 1 to 20%, temperature from 300 to 600 K, and strain rates between 0.001 ps−1 and 0.01 ps−1, assessing their impact on the ultimate tensile strength (UTS) and elastic modulus of the alloy. The results show a significant enhancement in both UTS and elastic modulus with increasing copper content, with the UTS increasing by 359% and the elastic modulus by 281% when copper content rises from 1 to 20%. In contrast, increasing the temperature from 300 to 600 K results in a 31% reduction in UTS and an 18.9% decrease in elastic modulus, highlighting the sensitivity of these properties to thermal effects. Additionally, higher strain rates were found to improve both UTS and elastic modulus, with an 11.95% increase in UTS and an 8.34% increase in elastic modulus at the highest strain rate (0.01 ps−1). These findings demonstrate the critical role of alloy composition, temperature, and strain rate in tailoring the mechanical properties of Al-Cu alloys, providing insights for optimizing the material for high-performance applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Molecular Modeling
Journal of Molecular Modeling 化学-化学综合
CiteScore
3.50
自引率
4.50%
发文量
362
审稿时长
2.9 months
期刊介绍: The Journal of Molecular Modeling focuses on "hardcore" modeling, publishing high-quality research and reports. Founded in 1995 as a purely electronic journal, it has adapted its format to include a full-color print edition, and adjusted its aims and scope fit the fast-changing field of molecular modeling, with a particular focus on three-dimensional modeling. Today, the journal covers all aspects of molecular modeling including life science modeling; materials modeling; new methods; and computational chemistry. Topics include computer-aided molecular design; rational drug design, de novo ligand design, receptor modeling and docking; cheminformatics, data analysis, visualization and mining; computational medicinal chemistry; homology modeling; simulation of peptides, DNA and other biopolymers; quantitative structure-activity relationships (QSAR) and ADME-modeling; modeling of biological reaction mechanisms; and combined experimental and computational studies in which calculations play a major role.
期刊最新文献
Simulation study on the influence of typical wave profiles on HMX with nanovoids hotspot temperature and decomposition reaction Theoretical study of the interaction of the potentially toxic contaminants Hg2+, CH3Hg+, CH3CH2Hg+, and C6H5Hg+ with a B3O3 monolayer matrix Structural insights into molecular and cellular level FXR binding potentials of GW4064 and LY2562175 hybrids by multi in silico modelling analyses Molecular dynamics method to predict the effects of temperature and strain rate on mechanical properties of Aluminum/Copper superalloy Investigating the mechanisms of ethanol-induced disruption of COVID-19 lipid bilayers through molecular dynamics simulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1