Ilya V. Roslyakov, Elena O. Sotnichuk, Stepan V. Sotnichuk, Sergey E. Kushnir, Kirill S. Napolskii
{"title":"Kinetic and crystallographic control of self-ordering of pores in anodic aluminium oxide","authors":"Ilya V. Roslyakov, Elena O. Sotnichuk, Stepan V. Sotnichuk, Sergey E. Kushnir, Kirill S. Napolskii","doi":"10.1007/s10008-024-06132-w","DOIUrl":null,"url":null,"abstract":"<div><p>Electrochemical oxidation of aluminium in acidic electrolyte solutions, also known as anodizing, is a widely used process for the finishing of pure aluminium and its alloys. The resulting anodic aluminium oxide (AAO) porous films play a significant role in modern science and technology. One of the most exciting features of AAO is the self-organization of pores into two-dimensional hexagonal patterns under specific anodizing conditions. The combination of a hexagonal arrangement of pores and precise control over pore diameter, interpore distance, and film thickness gives rise to a wide range of potential applications from decorative coatings to quantum technologies. This review discusses the kinetic approach to the guided search for anodizing conditions that lead to the formation of highly ordered porous structures, as well as recent data on how the crystallographic orientation of the aluminium substrate affects the growth rate and structure of AAO.</p></div>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"29 4","pages":"1341 - 1373"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Electrochemistry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10008-024-06132-w","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Electrochemical oxidation of aluminium in acidic electrolyte solutions, also known as anodizing, is a widely used process for the finishing of pure aluminium and its alloys. The resulting anodic aluminium oxide (AAO) porous films play a significant role in modern science and technology. One of the most exciting features of AAO is the self-organization of pores into two-dimensional hexagonal patterns under specific anodizing conditions. The combination of a hexagonal arrangement of pores and precise control over pore diameter, interpore distance, and film thickness gives rise to a wide range of potential applications from decorative coatings to quantum technologies. This review discusses the kinetic approach to the guided search for anodizing conditions that lead to the formation of highly ordered porous structures, as well as recent data on how the crystallographic orientation of the aluminium substrate affects the growth rate and structure of AAO.
期刊介绍:
The Journal of Solid State Electrochemistry is devoted to all aspects of solid-state chemistry and solid-state physics in electrochemistry.
The Journal of Solid State Electrochemistry publishes papers on all aspects of electrochemistry of solid compounds, including experimental and theoretical, basic and applied work. It equally publishes papers on the thermodynamics and kinetics of electrochemical reactions if at least one actively participating phase is solid. Also of interest are articles on the transport of ions and electrons in solids whenever these processes are relevant to electrochemical reactions and on the use of solid-state electrochemical reactions in the analysis of solids and their surfaces.
The journal covers solid-state electrochemistry and focusses on the following fields: mechanisms of solid-state electrochemical reactions, semiconductor electrochemistry, electrochemical batteries, accumulators and fuel cells, electrochemical mineral leaching, galvanic metal plating, electrochemical potential memory devices, solid-state electrochemical sensors, ion and electron transport in solid materials and polymers, electrocatalysis, photoelectrochemistry, corrosion of solid materials, solid-state electroanalysis, electrochemical machining of materials, electrochromism and electrochromic devices, new electrochemical solid-state synthesis.
The Journal of Solid State Electrochemistry makes the professional in research and industry aware of this swift progress and its importance for future developments and success in the above-mentioned fields.