Host–Guest Inversion Engineering Induced Superionic Composite Solid Electrolytes for High-Rate Solid-State Alkali Metal Batteries

IF 26.6 1区 材料科学 Q1 Engineering Nano-Micro Letters Pub Date : 2025-03-17 DOI:10.1007/s40820-025-01691-7
Xiong Xiong Liu, Long Pan, Haotian Zhang, Pengcheng Yuan, Mufan Cao, Yaping Wang, Zeyuan Xu, Min Gao, Zheng Ming Sun
{"title":"Host–Guest Inversion Engineering Induced Superionic Composite Solid Electrolytes for High-Rate Solid-State Alkali Metal Batteries","authors":"Xiong Xiong Liu,&nbsp;Long Pan,&nbsp;Haotian Zhang,&nbsp;Pengcheng Yuan,&nbsp;Mufan Cao,&nbsp;Yaping Wang,&nbsp;Zeyuan Xu,&nbsp;Min Gao,&nbsp;Zheng Ming Sun","doi":"10.1007/s40820-025-01691-7","DOIUrl":null,"url":null,"abstract":"<div><p>Composite solid electrolytes (CSEs) are promising for solid-state Li metal batteries but suffer from inferior room-temperature ionic conductivity due to sluggish ion transport and high cost due to expensive active ceramic fillers. Here, a host–guest inversion engineering strategy is proposed to develop superionic CSEs using cost-effective SiO<sub>2</sub> nanoparticles as passive ceramic hosts and poly(vinylidene fluoride-hexafluoropropylene) (PVH) microspheres as polymer guests, forming an unprecedented “polymer guest-in-ceramic host” (i.e., PVH-in-SiO<sub>2</sub>) architecture differing from the traditional “ceramic guest-in-polymer host”. The PVH-in-SiO<sub>2</sub> exhibits excellent Li-salt dissociation, achieving high-concentration free Li<sup>+</sup>. Owing to the low diffusion energy barriers and high diffusion coefficient, the free Li<sup>+</sup> is thermodynamically and kinetically favorable to migrate to and transport at the SiO<sub>2</sub>/PVH interfaces. Consequently, the PVH-in-SiO<sub>2</sub> delivers an exceptional ionic conductivity of 1.32 × 10<sup>−3</sup> S cm<sup>−1</sup> at 25 °C (vs<i>.</i> typically 10<sup>−5</sup>–10<sup>−4</sup> S cm<sup>−1</sup> using high-cost active ceramics), achieved under an ultralow residual solvent content of 2.9 wt% (vs<i>.</i> 8–15 wt% in other CSEs). Additionally, PVH-in-SiO<sub>2</sub> is electrochemically stable with Li anode and various cathodes. Therefore, the PVH-in-SiO<sub>2</sub> demonstrates excellent high-rate cyclability in LiFePO<sub>4</sub>|Li full cells (92.9% capacity-retention at 3C after 300 cycles under 25 °C) and outstanding stability with high-mass-loading LiFePO<sub>4</sub> (9.2 mg cm<sup>−1</sup>) and high-voltage NCM622 (147.1 mAh g<sup>−1</sup>). Furthermore, we verify the versatility of the host–guest inversion engineering strategy by fabricating Na-ion and K-ion-based PVH-in-SiO<sub>2</sub> CSEs with similarly excellent promotions in ionic conductivity. Our strategy offers a simple, low-cost approach to fabricating superionic CSEs for large-scale application of solid-state Li metal batteries and beyond. </p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":""},"PeriodicalIF":26.6000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-025-01691-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-025-01691-7","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Composite solid electrolytes (CSEs) are promising for solid-state Li metal batteries but suffer from inferior room-temperature ionic conductivity due to sluggish ion transport and high cost due to expensive active ceramic fillers. Here, a host–guest inversion engineering strategy is proposed to develop superionic CSEs using cost-effective SiO2 nanoparticles as passive ceramic hosts and poly(vinylidene fluoride-hexafluoropropylene) (PVH) microspheres as polymer guests, forming an unprecedented “polymer guest-in-ceramic host” (i.e., PVH-in-SiO2) architecture differing from the traditional “ceramic guest-in-polymer host”. The PVH-in-SiO2 exhibits excellent Li-salt dissociation, achieving high-concentration free Li+. Owing to the low diffusion energy barriers and high diffusion coefficient, the free Li+ is thermodynamically and kinetically favorable to migrate to and transport at the SiO2/PVH interfaces. Consequently, the PVH-in-SiO2 delivers an exceptional ionic conductivity of 1.32 × 10−3 S cm−1 at 25 °C (vs. typically 10−5–10−4 S cm−1 using high-cost active ceramics), achieved under an ultralow residual solvent content of 2.9 wt% (vs. 8–15 wt% in other CSEs). Additionally, PVH-in-SiO2 is electrochemically stable with Li anode and various cathodes. Therefore, the PVH-in-SiO2 demonstrates excellent high-rate cyclability in LiFePO4|Li full cells (92.9% capacity-retention at 3C after 300 cycles under 25 °C) and outstanding stability with high-mass-loading LiFePO4 (9.2 mg cm−1) and high-voltage NCM622 (147.1 mAh g−1). Furthermore, we verify the versatility of the host–guest inversion engineering strategy by fabricating Na-ion and K-ion-based PVH-in-SiO2 CSEs with similarly excellent promotions in ionic conductivity. Our strategy offers a simple, low-cost approach to fabricating superionic CSEs for large-scale application of solid-state Li metal batteries and beyond.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano-Micro Letters
Nano-Micro Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
32.60
自引率
4.90%
发文量
981
审稿时长
1.1 months
期刊介绍: Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand. Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields. Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.
期刊最新文献
An Overview of Dynamic Descriptions for Nanoscale Materials in Particulate Photocatalytic Systems from Spatiotemporal Perspectives Physics of 2D Materials for Developing Smart Devices Quasi-Solid Gel Electrolytes for Alkali Metal Battery Applications Water-Restrained Hydrogel Electrolytes with Repulsion-Driven Cationic Express Pathways for Durable Zinc-Ion Batteries Selective Emission Fabric for Indoor and Outdoor Passive Radiative Cooling in Personal Thermal Management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1