Assessing Personal PM2.5 Exposure: A Method Leveraging Movement Routes and Activity Space Information

IF 4.3 2区 环境科学与生态学 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Indoor air Pub Date : 2025-03-17 DOI:10.1155/ina/2412518
Shin-Young Park, Jaymin Kwon, Jeong-An Gim, Il-Ho Park, Cheol-Min Lee, Dae-Jin Song
{"title":"Assessing Personal PM2.5 Exposure: A Method Leveraging Movement Routes and Activity Space Information","authors":"Shin-Young Park,&nbsp;Jaymin Kwon,&nbsp;Jeong-An Gim,&nbsp;Il-Ho Park,&nbsp;Cheol-Min Lee,&nbsp;Dae-Jin Song","doi":"10.1155/ina/2412518","DOIUrl":null,"url":null,"abstract":"<p>Previous studies have consistently shown a significant correlation between air pollution, particularly PM<sub>2.5</sub>, and various diseases, as well as increased mortality rates. This study introduces a novel approach for predicting time-specific indoor PM<sub>2.5</sub> exposure by incorporating individual movement routes and activity spaces using GPS tracking data and a time–activity diary. The models were trained separately for each hour of the day (e.g., 0:00–0:59, 1:00–1:59) with a total of 24 models. Their applicability was demonstrated with data gathered from actual participants. Additionally, automated machine learning (<i>AutoML</i>) was utilized to optimize prediction performance. The results revealed that the proposed model effectively accounted for the influence of outdoor PM<sub>2.5</sub> concentrations and meteorological factors. The performance varied across different indoor environments, with the subway station model showing the highest prediction accuracy. Future research should address these uncertainties, adopt more advanced modeling techniques, and consider diverse indoor variables for a comprehensive understanding. The insights from this study could significantly enhance health risk assessments associated with fine particulate matter exposure.</p>","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":"2025 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/ina/2412518","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indoor air","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/ina/2412518","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Previous studies have consistently shown a significant correlation between air pollution, particularly PM2.5, and various diseases, as well as increased mortality rates. This study introduces a novel approach for predicting time-specific indoor PM2.5 exposure by incorporating individual movement routes and activity spaces using GPS tracking data and a time–activity diary. The models were trained separately for each hour of the day (e.g., 0:00–0:59, 1:00–1:59) with a total of 24 models. Their applicability was demonstrated with data gathered from actual participants. Additionally, automated machine learning (AutoML) was utilized to optimize prediction performance. The results revealed that the proposed model effectively accounted for the influence of outdoor PM2.5 concentrations and meteorological factors. The performance varied across different indoor environments, with the subway station model showing the highest prediction accuracy. Future research should address these uncertainties, adopt more advanced modeling techniques, and consider diverse indoor variables for a comprehensive understanding. The insights from this study could significantly enhance health risk assessments associated with fine particulate matter exposure.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Indoor air
Indoor air 环境科学-工程:环境
CiteScore
10.80
自引率
10.30%
发文量
175
审稿时长
3 months
期刊介绍: The quality of the environment within buildings is a topic of major importance for public health. Indoor Air provides a location for reporting original research results in the broad area defined by the indoor environment of non-industrial buildings. An international journal with multidisciplinary content, Indoor Air publishes papers reflecting the broad categories of interest in this field: health effects; thermal comfort; monitoring and modelling; source characterization; ventilation and other environmental control techniques. The research results present the basic information to allow designers, building owners, and operators to provide a healthy and comfortable environment for building occupants, as well as giving medical practitioners information on how to deal with illnesses related to the indoor environment.
期刊最新文献
Evaluating Indoor Thermal Comfort of the Elderly During Summer in the Hot-Humid and Less-Windy Climate Assessing Personal PM2.5 Exposure: A Method Leveraging Movement Routes and Activity Space Information The Galician Radon Map: Determining Indoor Radon Exposure Through Census Tracts Combined Intervention Removes More Aerosols From the Environment—A Quantitative Assessment Assessing the Fluctuation of Indoor Thermal Conditions in Naturally Ventilated Classrooms Through K-Means Clustering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1