Monica-Rae Owens, Samuel A. Tenhoeve, Clayton Rawson, Mohammed Azab, Michael Karsy
{"title":"Systematic Review of Radiomics and Artificial Intelligence in Intracranial Aneurysm Management","authors":"Monica-Rae Owens, Samuel A. Tenhoeve, Clayton Rawson, Mohammed Azab, Michael Karsy","doi":"10.1111/jon.70037","DOIUrl":null,"url":null,"abstract":"<p>Intracranial aneurysms, with an annual incidence of 2%–3%, reflect a rare disease associated with significant mortality and morbidity risks when ruptured. Early detection, risk stratification of high-risk subgroups, and prediction of patient outcomes are important to treatment. Radiomics is an emerging field using the quantification of medical imaging to identify parameters beyond traditional radiology interpretation that may offer diagnostic or prognostic significance. The general radiomic workflow involves image normalization and segmentation, feature extraction, feature selection or dimensional reduction, training of a predictive model, and validation of the said model. Artificial intelligence (AI) techniques have shown increasing interest in applications toward vascular pathologies, with some commercially successful software including AiDoc, RapidAI, and Viz.AI, as well as the more recent Viz Aneurysm. We performed a systematic review of 684 articles and identified 84 articles exploring the applications of radiomics and AI in aneurysm treatment. Most studies were published between 2018 and 2024, with over half of articles in 2022 and 2023. Studies included categories such as aneurysm diagnosis (25.0%), rupture risk prediction (50.0%), growth rate prediction (4.8%), hemodynamic assessment (2.4%), clinical outcome prediction (11.9%), and occlusion or stenosis assessment (6.0%). Studies utilized molecular data (2.4%), radiologic data alone (51.2%), clinical data alone (28.6%), and combined radiologic and clinical data (17.9%). These results demonstrate the current status of this emerging and exciting field. An increased pace of innovation in this space is likely with the expansion of clinical applications of radiomics and AI in multiple vascular pathologies.</p>","PeriodicalId":16399,"journal":{"name":"Journal of Neuroimaging","volume":"35 2","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jon.70037","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroimaging","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jon.70037","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Intracranial aneurysms, with an annual incidence of 2%–3%, reflect a rare disease associated with significant mortality and morbidity risks when ruptured. Early detection, risk stratification of high-risk subgroups, and prediction of patient outcomes are important to treatment. Radiomics is an emerging field using the quantification of medical imaging to identify parameters beyond traditional radiology interpretation that may offer diagnostic or prognostic significance. The general radiomic workflow involves image normalization and segmentation, feature extraction, feature selection or dimensional reduction, training of a predictive model, and validation of the said model. Artificial intelligence (AI) techniques have shown increasing interest in applications toward vascular pathologies, with some commercially successful software including AiDoc, RapidAI, and Viz.AI, as well as the more recent Viz Aneurysm. We performed a systematic review of 684 articles and identified 84 articles exploring the applications of radiomics and AI in aneurysm treatment. Most studies were published between 2018 and 2024, with over half of articles in 2022 and 2023. Studies included categories such as aneurysm diagnosis (25.0%), rupture risk prediction (50.0%), growth rate prediction (4.8%), hemodynamic assessment (2.4%), clinical outcome prediction (11.9%), and occlusion or stenosis assessment (6.0%). Studies utilized molecular data (2.4%), radiologic data alone (51.2%), clinical data alone (28.6%), and combined radiologic and clinical data (17.9%). These results demonstrate the current status of this emerging and exciting field. An increased pace of innovation in this space is likely with the expansion of clinical applications of radiomics and AI in multiple vascular pathologies.
期刊介绍:
Start reading the Journal of Neuroimaging to learn the latest neurological imaging techniques. The peer-reviewed research is written in a practical clinical context, giving you the information you need on:
MRI
CT
Carotid Ultrasound and TCD
SPECT
PET
Endovascular Surgical Neuroradiology
Functional MRI
Xenon CT
and other new and upcoming neuroscientific modalities.The Journal of Neuroimaging addresses the full spectrum of human nervous system disease, including stroke, neoplasia, degenerating and demyelinating disease, epilepsy, tumors, lesions, infectious disease, cerebral vascular arterial diseases, toxic-metabolic disease, psychoses, dementias, heredo-familial disease, and trauma.Offering original research, review articles, case reports, neuroimaging CPCs, and evaluations of instruments and technology relevant to the nervous system, the Journal of Neuroimaging focuses on useful clinical developments and applications, tested techniques and interpretations, patient care, diagnostics, and therapeutics. Start reading today!