Nomnotho Jiyane, Carla Santana Santos, Igor Echevarria Poza, Mario Palacios Corella, Muhammad Adib Abdillah Mahbub, Gimena Marin-Tajadura, Thomas Quast, Maria Ibáñez, Edgar Ventosa, Wolfgang Schuhmann
{"title":"Recessed Microelectrodes as a Platform to Investigate the Intrinsic Redox Process of Prussian Blue Analogs for Energy Storage Application","authors":"Nomnotho Jiyane, Carla Santana Santos, Igor Echevarria Poza, Mario Palacios Corella, Muhammad Adib Abdillah Mahbub, Gimena Marin-Tajadura, Thomas Quast, Maria Ibáñez, Edgar Ventosa, Wolfgang Schuhmann","doi":"10.1002/batt.202400743","DOIUrl":null,"url":null,"abstract":"<p>The determination of the intrinsic properties of solid active material candidates is essential for their performance optimization. However, macroscopic electrodes and related analytical techniques show challenges concerning the number of additional influencing parameters. We explore recessed microelectrodes (rME) as a platform that allows for a binder-free investigation of Prussian Blue analogues (PBA), a family of promising battery materials. The enhanced diffusion using microelectrochemical tools is indispensable to assess the intrinsic material performance, overcoming the limitation of cation diffusion from the electrolyte to the solid interface during (dis)charging cycles and allowing the investigation of limiting steps in the coupled ion-electron transfer process. The intrinsic electrochemical performance of PBAs was studied in a three-electrode configuration by means of cyclic voltammetry and galvanostatic (dis)charging in aqueous Na<sup>+</sup>-containing electrolyte. We extended the evaluation to the role of the electrolyte on the performance of cathodic and anodic processes of a Mn-based PBA. Ex-situ and operando chemical characterization were coupled to support the microelectrochemical results.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 3","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202400743","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/batt.202400743","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
The determination of the intrinsic properties of solid active material candidates is essential for their performance optimization. However, macroscopic electrodes and related analytical techniques show challenges concerning the number of additional influencing parameters. We explore recessed microelectrodes (rME) as a platform that allows for a binder-free investigation of Prussian Blue analogues (PBA), a family of promising battery materials. The enhanced diffusion using microelectrochemical tools is indispensable to assess the intrinsic material performance, overcoming the limitation of cation diffusion from the electrolyte to the solid interface during (dis)charging cycles and allowing the investigation of limiting steps in the coupled ion-electron transfer process. The intrinsic electrochemical performance of PBAs was studied in a three-electrode configuration by means of cyclic voltammetry and galvanostatic (dis)charging in aqueous Na+-containing electrolyte. We extended the evaluation to the role of the electrolyte on the performance of cathodic and anodic processes of a Mn-based PBA. Ex-situ and operando chemical characterization were coupled to support the microelectrochemical results.
期刊介绍:
Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.