The KSR1/MEK/ERK signaling pathway promotes the progression of intrauterine adhesions.

IF 4.4 2区 生物学 Q2 CELL BIOLOGY Cellular signalling Pub Date : 2025-03-13 DOI:10.1016/j.cellsig.2025.111730
Shasha Wu, Qiuhong Chen, Xiao Yang, Lulu Zhang, Xiyue Huang, Jinglin Huang, Jiangling Wu, Congcong Sun, Wenwen Zhang, Jia Wang
{"title":"The KSR1/MEK/ERK signaling pathway promotes the progression of intrauterine adhesions.","authors":"Shasha Wu, Qiuhong Chen, Xiao Yang, Lulu Zhang, Xiyue Huang, Jinglin Huang, Jiangling Wu, Congcong Sun, Wenwen Zhang, Jia Wang","doi":"10.1016/j.cellsig.2025.111730","DOIUrl":null,"url":null,"abstract":"<p><p>Ras kinase suppressor 1 (KSR1) serves as a scaffold protein within the RAS-RAF pathway and plays a role in tumorigenesis, immune regulation, cell proliferation, and apoptosis. However, the specific role of KSR1 in the formation and progression of fibrotic diseases, such as intrauterine adhesions (IUA), remains unclear. This study aims to investigate KSR1 expression in IUA and the mechanisms underlying its role in promoting IUA progression. KSR1 was found to be significantly overexpressed in the endometrium of both IUA model rats and patients with IUA. KSR1 is positively involved in the regulation of proliferation, migration, and fibrosis(FN1,Collagen I, α-SMA) in immortalized human endometrial stromal cells (THESCs). Furthermore, KSR1 knockdown was observed to inhibit the fibrosis, proliferation, and migration of transforming growth factor-β1 (TGF-β1)-induced THESCs. Further studies demonstrated that the key proteins of the MEK/ERK signaling pathway, p-MEK1 and p-ERK, were significantly overexpressed in the uterus of IUA rats. In vitro rescue experiments confirmed that the MEK/ERK pathway inhibitor U0126 (An ERK inhibitor) effectively suppressed the enhanced fibrosis, proliferation, and migration induced by KSR1 overexpression. In conclusion, this study demonstrates that KSR1 promotes IUA by enhancing proliferation, migration, and fibrosis of endometrial stromal cells via the MEK/ERK signaling pathway.</p>","PeriodicalId":9902,"journal":{"name":"Cellular signalling","volume":" ","pages":"111730"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular signalling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cellsig.2025.111730","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Ras kinase suppressor 1 (KSR1) serves as a scaffold protein within the RAS-RAF pathway and plays a role in tumorigenesis, immune regulation, cell proliferation, and apoptosis. However, the specific role of KSR1 in the formation and progression of fibrotic diseases, such as intrauterine adhesions (IUA), remains unclear. This study aims to investigate KSR1 expression in IUA and the mechanisms underlying its role in promoting IUA progression. KSR1 was found to be significantly overexpressed in the endometrium of both IUA model rats and patients with IUA. KSR1 is positively involved in the regulation of proliferation, migration, and fibrosis(FN1,Collagen I, α-SMA) in immortalized human endometrial stromal cells (THESCs). Furthermore, KSR1 knockdown was observed to inhibit the fibrosis, proliferation, and migration of transforming growth factor-β1 (TGF-β1)-induced THESCs. Further studies demonstrated that the key proteins of the MEK/ERK signaling pathway, p-MEK1 and p-ERK, were significantly overexpressed in the uterus of IUA rats. In vitro rescue experiments confirmed that the MEK/ERK pathway inhibitor U0126 (An ERK inhibitor) effectively suppressed the enhanced fibrosis, proliferation, and migration induced by KSR1 overexpression. In conclusion, this study demonstrates that KSR1 promotes IUA by enhancing proliferation, migration, and fibrosis of endometrial stromal cells via the MEK/ERK signaling pathway.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cellular signalling
Cellular signalling 生物-细胞生物学
CiteScore
8.40
自引率
0.00%
发文量
250
审稿时长
27 days
期刊介绍: Cellular Signalling publishes original research describing fundamental and clinical findings on the mechanisms, actions and structural components of cellular signalling systems in vitro and in vivo. Cellular Signalling aims at full length research papers defining signalling systems ranging from microorganisms to cells, tissues and higher organisms.
期刊最新文献
OTUB1 promotes glioma progression by stabilizing TRAF4. Protein succinylation mechanisms and potential targeted therapies in urinary disease. Modulation of Mettl5 alleviates airway allergy by regulating the epigenetic profile of M2 macrophages Neurodegenerative diseases: Epigenetic regulatory mechanisms and therapeutic potential The KSR1/MEK/ERK signaling pathway promotes the progression of intrauterine adhesions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1