Suppression of 8-oxoguanine DNA glycosylase (OGG1) activity produced positive impacts on disease severity, survival, and histopathological features of mice infected with Plasmodium berghei

IF 1.6 4区 医学 Q3 PARASITOLOGY Experimental parasitology Pub Date : 2025-03-13 DOI:10.1016/j.exppara.2025.108930
Mukhtar Gambo Lawal , Abdullahi Samaila , Rusliza Basir , Nur Aimi Liyana Abd Aziz , Abdusalam Abdullah Alarabei , Maizaton Atmadini Abdullah , Roslaini Abd Majid , Norshariza Nordin , Mohd Khairi Hussain , Elysha Nur Ismail
{"title":"Suppression of 8-oxoguanine DNA glycosylase (OGG1) activity produced positive impacts on disease severity, survival, and histopathological features of mice infected with Plasmodium berghei","authors":"Mukhtar Gambo Lawal ,&nbsp;Abdullahi Samaila ,&nbsp;Rusliza Basir ,&nbsp;Nur Aimi Liyana Abd Aziz ,&nbsp;Abdusalam Abdullah Alarabei ,&nbsp;Maizaton Atmadini Abdullah ,&nbsp;Roslaini Abd Majid ,&nbsp;Norshariza Nordin ,&nbsp;Mohd Khairi Hussain ,&nbsp;Elysha Nur Ismail","doi":"10.1016/j.exppara.2025.108930","DOIUrl":null,"url":null,"abstract":"<div><div>Malaria is a life-threatening disease, leading to significant morbidity and mortality. Malaria treatment remains a challenge due to its intricate pathophysiology and high levels of parasite resistance to many currently available antimalarial agents. Thus, there is an urgent need for more therapeutic strategies to combat the disease. OGG1 activity has been implicated in many inflammatory disease conditions, making suppressing OGG1 activity a potential target for therapeutic purposes. The current study aimed to determine the effect of suppressing OGG1 activity on the severity, survival, and histopathological features of <em>P. berghei</em>-infected mice. In this study, the effects of modulating OGG1 activity on parasitaemia development, disease progression, survival rate, and histopathological outcomes in major organs of <em>Plasmodium berghei</em> (<em>P. berghei)</em> infected mice were evaluated. A significant difference in the mean parasitaemia was observed between the Vehicle, TH5487-treated, and O8-treated mice (p &lt; 0.001). Vehicle-treated mice exhibited markedly elevated mean percentage parasitaemia and succumbed to the infection earlier than TH5487 and O8-treated mice. The O8-treated mice showed the highest parasitaemia reduction of 39.60 ± 1.53 % compared to TH5487-treated mice. Histopathological examination revealed less severe pathological features associated with <em>P. berghei</em> infection in mice treated with OGG1 inhibitors than in vehicle-treated malaria mice. Significant differences were observed in the sequestration of PRBC, inflammation, hemozoin deposition, and architectural loss in mice treated with O8 and TH5487 compared to untreated malaria mice. The results of this study suggested that OGG1 suppression led to a decrease in parasitaemia and severity of the histopathological features in <em>P. berghei</em>-infected mice. The increased survival of treated malaria mice further supported this effect. These findings indicate that OGG1 suppression could be a potential therapeutic strategy during malaria.</div></div>","PeriodicalId":12117,"journal":{"name":"Experimental parasitology","volume":"272 ","pages":"Article 108930"},"PeriodicalIF":1.6000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental parasitology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014489425000359","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PARASITOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Malaria is a life-threatening disease, leading to significant morbidity and mortality. Malaria treatment remains a challenge due to its intricate pathophysiology and high levels of parasite resistance to many currently available antimalarial agents. Thus, there is an urgent need for more therapeutic strategies to combat the disease. OGG1 activity has been implicated in many inflammatory disease conditions, making suppressing OGG1 activity a potential target for therapeutic purposes. The current study aimed to determine the effect of suppressing OGG1 activity on the severity, survival, and histopathological features of P. berghei-infected mice. In this study, the effects of modulating OGG1 activity on parasitaemia development, disease progression, survival rate, and histopathological outcomes in major organs of Plasmodium berghei (P. berghei) infected mice were evaluated. A significant difference in the mean parasitaemia was observed between the Vehicle, TH5487-treated, and O8-treated mice (p < 0.001). Vehicle-treated mice exhibited markedly elevated mean percentage parasitaemia and succumbed to the infection earlier than TH5487 and O8-treated mice. The O8-treated mice showed the highest parasitaemia reduction of 39.60 ± 1.53 % compared to TH5487-treated mice. Histopathological examination revealed less severe pathological features associated with P. berghei infection in mice treated with OGG1 inhibitors than in vehicle-treated malaria mice. Significant differences were observed in the sequestration of PRBC, inflammation, hemozoin deposition, and architectural loss in mice treated with O8 and TH5487 compared to untreated malaria mice. The results of this study suggested that OGG1 suppression led to a decrease in parasitaemia and severity of the histopathological features in P. berghei-infected mice. The increased survival of treated malaria mice further supported this effect. These findings indicate that OGG1 suppression could be a potential therapeutic strategy during malaria.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
8-氧鸟嘌呤DNA糖基化酶(OGG1)活性的抑制对感染伯氏疟原虫的小鼠的疾病严重程度、生存和组织病理学特征产生积极影响。
疟疾是一种危及生命的疾病,导致很高的发病率和死亡率。疟疾治疗仍然是一项挑战,因为其复杂的病理生理和寄生虫对许多现有抗疟药的高度耐药性。因此,迫切需要更多的治疗策略来对抗这种疾病。OGG1活性与许多炎症性疾病有关,这使得抑制OGG1活性成为治疗目的的潜在靶点。目前的研究旨在确定抑制OGG1活性对伯氏假体感染小鼠的严重程度、生存和组织病理学特征的影响。在这项研究中,研究人员评估了调节OGG1活性对伯氏疟原虫(P. berghei)感染小鼠主要器官中寄生虫血症的发生、疾病进展、存活率和组织病理学结果的影响。小鼠的平均寄生率在载药组、th5487组和o8组之间有显著差异(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Experimental parasitology
Experimental parasitology 医学-寄生虫学
CiteScore
3.10
自引率
4.80%
发文量
160
审稿时长
3 months
期刊介绍: Experimental Parasitology emphasizes modern approaches to parasitology, including molecular biology and immunology. The journal features original research papers on the physiological, metabolic, immunologic, biochemical, nutritional, and chemotherapeutic aspects of parasites and host-parasite relationships.
期刊最新文献
Effect of a low-protein diet on the spleen of Swiss Webster mice infected with Schistosoma mansoni. Seaweed-derived nanoparticles for mosquito control: An eco-nanotechnology approach Histopathological changes, dynamics of macrophage polarization and deposition of type I and III collagen along the course of experimental hepatic toxocariasis Larvicidal and macrofilaricidal efficacy of closantel and morantel against mosquito larvae and Setaria digitata nematodes Plasmodium vivax circumsporozoite protein and vaccine strategies in murine models: A scoping review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1