Yafen Chen, Shuyao Shan, Qiqi Xue, Yan Ren, Qihong Wu, Jiawei Chen, Ke Yang, Jiumei Cao
{"title":"Sirtuin1 mitigates hypoxia-induced cardiomyocyte apoptosis in myocardial infarction via PHD3/HIF-1α.","authors":"Yafen Chen, Shuyao Shan, Qiqi Xue, Yan Ren, Qihong Wu, Jiawei Chen, Ke Yang, Jiumei Cao","doi":"10.1186/s10020-025-01155-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Acute myocardial infarction (AMI) is a leading cause of mortality, characterized by myocardial ischemia that induces cardiomyocyte apoptosis and subsequent cardiac dysfunction. Sirtuin 1 (Sirt1) has emerged as a key regulator of cell survival and apoptosis, particularly under hypoxic conditions.</p><p><strong>Methods: </strong>An AMI animal model was established via ligation of the left anterior descending (LAD) coronary artery. Gene expression in the infarcted region was evaluated at various time points. Sirt1 overexpression and control lentivirus were administered to the peri-infarct region of mice heart. After LAD ligation, assessment on myocardial infarct size, cardiac function, and cardiomyocyte apoptosis were performed. In vitro, primary mouse cardiomyocytes subjected to hypoxia were analyzed for gene expression, while interactions among Sirt1, Phd3, and Hif-1α were explored using diverse treatment approaches.</p><p><strong>Results: </strong>A significant reduction in Sirt1 and Phd3 expression, along with an increase in Hif-1α and cleaved caspase-3, was observed in a time-dependent manner post-myocardial infarction (MI). In vitro findings revealed that hypoxia decreased nuclear Sirt1 and cytoplasmic Phd3 levels while promoting a time-dependent increase in Hif-1α and cleaved caspase-3. Furthermore, Sirt1 overexpression enhanced Phd3 expression in cardiomyocytes, suppressed Hif-1α and cleaved caspase-3 levels, and alleviated hypoxia-induced cardiomyocyte apoptosis. Notably, knockdown of Phd3 negated Sirt1's inhibitory effect on Hif-1α, whereas Hif-1α knockdown promoted Sirt1 expression. Sirt1 overexpression reduced infarct size, decreased cardiomyocyte apoptosis, and improved cardiac function.</p><p><strong>Conclusions: </strong>Sirt1 effectively reduces cardiomyocyte apoptosis and myocardial infarction size while enhancing cardiac function post-MI, primarily through the Phd3/Hif-1α signaling pathway.</p>","PeriodicalId":18813,"journal":{"name":"Molecular Medicine","volume":"31 1","pages":"100"},"PeriodicalIF":6.0000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s10020-025-01155-z","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Acute myocardial infarction (AMI) is a leading cause of mortality, characterized by myocardial ischemia that induces cardiomyocyte apoptosis and subsequent cardiac dysfunction. Sirtuin 1 (Sirt1) has emerged as a key regulator of cell survival and apoptosis, particularly under hypoxic conditions.
Methods: An AMI animal model was established via ligation of the left anterior descending (LAD) coronary artery. Gene expression in the infarcted region was evaluated at various time points. Sirt1 overexpression and control lentivirus were administered to the peri-infarct region of mice heart. After LAD ligation, assessment on myocardial infarct size, cardiac function, and cardiomyocyte apoptosis were performed. In vitro, primary mouse cardiomyocytes subjected to hypoxia were analyzed for gene expression, while interactions among Sirt1, Phd3, and Hif-1α were explored using diverse treatment approaches.
Results: A significant reduction in Sirt1 and Phd3 expression, along with an increase in Hif-1α and cleaved caspase-3, was observed in a time-dependent manner post-myocardial infarction (MI). In vitro findings revealed that hypoxia decreased nuclear Sirt1 and cytoplasmic Phd3 levels while promoting a time-dependent increase in Hif-1α and cleaved caspase-3. Furthermore, Sirt1 overexpression enhanced Phd3 expression in cardiomyocytes, suppressed Hif-1α and cleaved caspase-3 levels, and alleviated hypoxia-induced cardiomyocyte apoptosis. Notably, knockdown of Phd3 negated Sirt1's inhibitory effect on Hif-1α, whereas Hif-1α knockdown promoted Sirt1 expression. Sirt1 overexpression reduced infarct size, decreased cardiomyocyte apoptosis, and improved cardiac function.
Conclusions: Sirt1 effectively reduces cardiomyocyte apoptosis and myocardial infarction size while enhancing cardiac function post-MI, primarily through the Phd3/Hif-1α signaling pathway.
期刊介绍:
Molecular Medicine is an open access journal that focuses on publishing recent findings related to disease pathogenesis at the molecular or physiological level. These insights can potentially contribute to the development of specific tools for disease diagnosis, treatment, or prevention. The journal considers manuscripts that present material pertinent to the genetic, molecular, or cellular underpinnings of critical physiological or disease processes. Submissions to Molecular Medicine are expected to elucidate the broader implications of the research findings for human disease and medicine in a manner that is accessible to a wide audience.