Analysis of neurexin-neuroligin complexes supports an isoform-specific role for beta-neurexin-1 dysfunction in a mouse model of autism.

IF 3.3 3区 医学 Q2 NEUROSCIENCES Molecular Brain Pub Date : 2025-03-14 DOI:10.1186/s13041-025-01183-0
Francisco Arias-Aragón, Estefanía Robles-Lanuza, Ángela Sánchez-Gómez, Amalia Martinez-Mir, Francisco G Scholl
{"title":"Analysis of neurexin-neuroligin complexes supports an isoform-specific role for beta-neurexin-1 dysfunction in a mouse model of autism.","authors":"Francisco Arias-Aragón, Estefanía Robles-Lanuza, Ángela Sánchez-Gómez, Amalia Martinez-Mir, Francisco G Scholl","doi":"10.1186/s13041-025-01183-0","DOIUrl":null,"url":null,"abstract":"<p><p>Neurexins are presynaptic plasma membrane proteins that regulate key aspects of synapse physiology through the formation of transcellular complexes with postsynaptic ligands, including neuroligins (Nlgns). Each neurexin gene (NRXN1-3) generates two main alternative-spliced transcripts that generate alpha and beta-Nrxn isoforms differing in their extracellular domains. Mutations in NRXN1 are associated with autism and other neurodevelopmental disorders. However, whether dysfunction of NRXN1 occurs through common or isoform-specific postsynaptic partners for alpha- and beta-Nrxn1 is not completely known. The association of Nrxn1 proteins with postsynaptic partners has been mostly analysed in experiments that test binding, but Nrxn proteins must interact with Nlgns in opposing cells, which requires transcellular oligomerization. Here, we studied the interactions of Nrxn1/Nlgn pairs across the synapse and identified the type of association affected in a mouse model of autism. We found that beta-Nrxn1 can be recruited at synaptic contacts by glutamatergic Nlgn1 and GABAergic Nlgn2, whereas alpha-Nrxn1 is a presynaptic partner of Nlgn2. Insertion of alternative spliced segment 4 (AS4) negatively modulates the presynaptic recruitment of Nrxn1 by Nlgns. These data obtained in transcellular assays help clarify previous knowledge based on the ability of Nrxn1 to bind to Nlgns. Interestingly, we found that a mutant beta-Nrxn1 shows ligand restriction for glutamatergic Nlgn1 in the brain of a mouse model of autism. These findings suggest that autism-associated mutations affecting beta-Nrxn1 can act through specific synaptic partners that may be different from those of its alpha-Nrxn1 counterparts.</p>","PeriodicalId":18851,"journal":{"name":"Molecular Brain","volume":"18 1","pages":"20"},"PeriodicalIF":3.3000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11909895/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Brain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13041-025-01183-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Neurexins are presynaptic plasma membrane proteins that regulate key aspects of synapse physiology through the formation of transcellular complexes with postsynaptic ligands, including neuroligins (Nlgns). Each neurexin gene (NRXN1-3) generates two main alternative-spliced transcripts that generate alpha and beta-Nrxn isoforms differing in their extracellular domains. Mutations in NRXN1 are associated with autism and other neurodevelopmental disorders. However, whether dysfunction of NRXN1 occurs through common or isoform-specific postsynaptic partners for alpha- and beta-Nrxn1 is not completely known. The association of Nrxn1 proteins with postsynaptic partners has been mostly analysed in experiments that test binding, but Nrxn proteins must interact with Nlgns in opposing cells, which requires transcellular oligomerization. Here, we studied the interactions of Nrxn1/Nlgn pairs across the synapse and identified the type of association affected in a mouse model of autism. We found that beta-Nrxn1 can be recruited at synaptic contacts by glutamatergic Nlgn1 and GABAergic Nlgn2, whereas alpha-Nrxn1 is a presynaptic partner of Nlgn2. Insertion of alternative spliced segment 4 (AS4) negatively modulates the presynaptic recruitment of Nrxn1 by Nlgns. These data obtained in transcellular assays help clarify previous knowledge based on the ability of Nrxn1 to bind to Nlgns. Interestingly, we found that a mutant beta-Nrxn1 shows ligand restriction for glutamatergic Nlgn1 in the brain of a mouse model of autism. These findings suggest that autism-associated mutations affecting beta-Nrxn1 can act through specific synaptic partners that may be different from those of its alpha-Nrxn1 counterparts.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Brain
Molecular Brain NEUROSCIENCES-
CiteScore
7.30
自引率
0.00%
发文量
97
审稿时长
>12 weeks
期刊介绍: Molecular Brain is an open access, peer-reviewed journal that considers manuscripts on all aspects of studies on the nervous system at the molecular, cellular, and systems level providing a forum for scientists to communicate their findings. Molecular brain research is a rapidly expanding research field in which integrative approaches at the genetic, molecular, cellular and synaptic levels yield key information about the physiological and pathological brain. These studies involve the use of a wide range of modern techniques in molecular biology, genomics, proteomics, imaging and electrophysiology.
期刊最新文献
Moderate ethanol exposure disrupts energy homesotasis between central and peripheral system in APP/PS1 mice. Analysis of neurexin-neuroligin complexes supports an isoform-specific role for beta-neurexin-1 dysfunction in a mouse model of autism. Virally mediated expression of a biologically active peptide to restrain the nuclear functions of ERK1/2 attenuates learning extinction but not acquisition. Distinct neural responses of ventromedial prefrontal cortex-projecting nucleus reuniens neurons during aversive memory extinction. Quercetin carbon quantum dots: dual-target therapy for intracerebral hemorrhage in mice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1