Targeted activation of ErbB4 receptor ameliorates neuronal deficits and neuroinflammation in a food-borne polystyrene microplastic exposed mouse model.
Chong Liu, Yan Zhao, Wei Zhang, Ji-Ji Dao, Qian Li, Jia Huang, Zhen-Feng Li, Yu-Ke Ma, Chen-Meng Qiao, Chun Cui, Shuang-Xi Chen, Li Yu, Yan-Qin Shen, Wei-Jiang Zhao
{"title":"Targeted activation of ErbB4 receptor ameliorates neuronal deficits and neuroinflammation in a food-borne polystyrene microplastic exposed mouse model.","authors":"Chong Liu, Yan Zhao, Wei Zhang, Ji-Ji Dao, Qian Li, Jia Huang, Zhen-Feng Li, Yu-Ke Ma, Chen-Meng Qiao, Chun Cui, Shuang-Xi Chen, Li Yu, Yan-Qin Shen, Wei-Jiang Zhao","doi":"10.1186/s12974-025-03406-6","DOIUrl":null,"url":null,"abstract":"<p><p>The impact of polystyrene microplastics (PS-MPs) on the nervous system has been documented in the literature. Numerous studies have demonstrated that the activation of the epidermal growth factor receptor 4 (ErbB4) is crucial in neuronal injury and regeneration processes. This study investigated the role of targeted activation of ErbB4 receptor through a small molecule agonist, 4-bromo-1-hydroxy-2-naphthoic acid (C11H7BrO3, E4A), in mitigating PS-MPs-induced neuronal injury. The findings revealed that targeted activation of ErbB4 receptor significantly ameliorated cognitive behavioral deficits in mice exposed to PS-MPs. Furthermore, E4A treatment upregulated the expression of dedicator of cytokinesis 3 (DOCK3) and Sirtuin 3 (SIRT3) and mitigated mitochondrial and synaptic dysfunction within the hippocampus of PS-MPs-exposed mice. E4A also diminished the activation of the TLR4-NF-κB-NLRP3 signaling pathway, consequently reducing neuroinflammation. In vitro experiments demonstrated that E4A partially alleviated PS-MPs-induced hippocampal neuronal injury and its effects on microglial inflammation. In conclusion, the findings of this study indicate that targeted activation of ErbB4 receptor may mitigate neuronal damage and subsequent neuroinflammation, thereby alleviating hippocampal neuronal injury induced by PS-MPs exposure and ameliorating cognitive dysfunction. These results offer valuable insights for the development of potential therapeutic strategies.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"22 1","pages":"86"},"PeriodicalIF":9.3000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroinflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12974-025-03406-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The impact of polystyrene microplastics (PS-MPs) on the nervous system has been documented in the literature. Numerous studies have demonstrated that the activation of the epidermal growth factor receptor 4 (ErbB4) is crucial in neuronal injury and regeneration processes. This study investigated the role of targeted activation of ErbB4 receptor through a small molecule agonist, 4-bromo-1-hydroxy-2-naphthoic acid (C11H7BrO3, E4A), in mitigating PS-MPs-induced neuronal injury. The findings revealed that targeted activation of ErbB4 receptor significantly ameliorated cognitive behavioral deficits in mice exposed to PS-MPs. Furthermore, E4A treatment upregulated the expression of dedicator of cytokinesis 3 (DOCK3) and Sirtuin 3 (SIRT3) and mitigated mitochondrial and synaptic dysfunction within the hippocampus of PS-MPs-exposed mice. E4A also diminished the activation of the TLR4-NF-κB-NLRP3 signaling pathway, consequently reducing neuroinflammation. In vitro experiments demonstrated that E4A partially alleviated PS-MPs-induced hippocampal neuronal injury and its effects on microglial inflammation. In conclusion, the findings of this study indicate that targeted activation of ErbB4 receptor may mitigate neuronal damage and subsequent neuroinflammation, thereby alleviating hippocampal neuronal injury induced by PS-MPs exposure and ameliorating cognitive dysfunction. These results offer valuable insights for the development of potential therapeutic strategies.
期刊介绍:
The Journal of Neuroinflammation is a peer-reviewed, open access publication that emphasizes the interaction between the immune system, particularly the innate immune system, and the nervous system. It covers various aspects, including the involvement of CNS immune mediators like microglia and astrocytes, the cytokines and chemokines they produce, and the influence of peripheral neuro-immune interactions, T cells, monocytes, complement proteins, acute phase proteins, oxidative injury, and related molecular processes.
Neuroinflammation is a rapidly expanding field that has significantly enhanced our knowledge of chronic neurological diseases. It attracts researchers from diverse disciplines such as pathology, biochemistry, molecular biology, genetics, clinical medicine, and epidemiology. Substantial contributions to this field have been made through studies involving populations, patients, postmortem tissues, animal models, and in vitro systems.
The Journal of Neuroinflammation consolidates research that centers around common pathogenic processes. It serves as a platform for integrative reviews and commentaries in this field.