Vanessa Steindorf, Hamna Mariyam K B, Nico Stollenwerk, Aitor Cevidanes, Jesús F Barandika, Patricia Vazquez, Ana L García-Pérez, Maíra Aguiar
{"title":"Forecasting invasive mosquito abundance in the Basque Country, Spain using machine learning techniques.","authors":"Vanessa Steindorf, Hamna Mariyam K B, Nico Stollenwerk, Aitor Cevidanes, Jesús F Barandika, Patricia Vazquez, Ana L García-Pérez, Maíra Aguiar","doi":"10.1186/s13071-025-06733-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Mosquito-borne diseases cause millions of deaths each year and are increasingly spreading from tropical and subtropical regions into temperate zones, posing significant public health risks. In the Basque Country region of Spain, changing climatic conditions have driven the spread of invasive mosquitoes, increasing the potential for local transmission of diseases such as dengue, Zika, and chikungunya. The establishment of mosquito species in new areas, coupled with rising mosquito populations and viremic imported cases, presents challenges for public health systems in non-endemic regions.</p><p><strong>Methods: </strong>This study uses models that capture the complexities of the mosquito life cycle, driven by interactions with weather variables, including temperature, precipitation, and humidity. Leveraging machine learning techniques, we aimed to forecast Aedes invasive mosquito abundance in the provinces of the Basque Country, using egg count as a proxy and weather features as key independent variables. A Spearman correlation was used to assess relationships between climate variables and mosquito egg counts, as well as their lagged time series versions. Forecasting models, including random forest (RF) and seasonal autoregressive integrated moving average (SARIMAX), were evaluated using root mean squared error (RMSE) and mean absolute error (MAE) metrics.</p><p><strong>Results: </strong>Statistical analysis revealed significant impacts of temperature, precipitation, and humidity on mosquito egg abundance. The random forest (RF) model demonstrated the highest forecasting accuracy, followed by the SARIMAX model. Incorporating lagged climate variables and ovitrap egg counts into the models improved predictions, enabling more accurate forecasts of Aedes invasive mosquito abundance.</p><p><strong>Conclusions: </strong>The findings emphasize the importance of integrating climate-driven forecasting tools to predict the abundance of mosquitoes where data are available. Furthermore, this study highlights the critical need for ongoing entomological surveillance to enhance mosquito spread forecasting and contribute to the development and assessment of effective vector control strategies in regions of mosquito expansion.</p>","PeriodicalId":19793,"journal":{"name":"Parasites & Vectors","volume":"18 1","pages":"109"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11909879/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parasites & Vectors","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13071-025-06733-y","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PARASITOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Mosquito-borne diseases cause millions of deaths each year and are increasingly spreading from tropical and subtropical regions into temperate zones, posing significant public health risks. In the Basque Country region of Spain, changing climatic conditions have driven the spread of invasive mosquitoes, increasing the potential for local transmission of diseases such as dengue, Zika, and chikungunya. The establishment of mosquito species in new areas, coupled with rising mosquito populations and viremic imported cases, presents challenges for public health systems in non-endemic regions.
Methods: This study uses models that capture the complexities of the mosquito life cycle, driven by interactions with weather variables, including temperature, precipitation, and humidity. Leveraging machine learning techniques, we aimed to forecast Aedes invasive mosquito abundance in the provinces of the Basque Country, using egg count as a proxy and weather features as key independent variables. A Spearman correlation was used to assess relationships between climate variables and mosquito egg counts, as well as their lagged time series versions. Forecasting models, including random forest (RF) and seasonal autoregressive integrated moving average (SARIMAX), were evaluated using root mean squared error (RMSE) and mean absolute error (MAE) metrics.
Results: Statistical analysis revealed significant impacts of temperature, precipitation, and humidity on mosquito egg abundance. The random forest (RF) model demonstrated the highest forecasting accuracy, followed by the SARIMAX model. Incorporating lagged climate variables and ovitrap egg counts into the models improved predictions, enabling more accurate forecasts of Aedes invasive mosquito abundance.
Conclusions: The findings emphasize the importance of integrating climate-driven forecasting tools to predict the abundance of mosquitoes where data are available. Furthermore, this study highlights the critical need for ongoing entomological surveillance to enhance mosquito spread forecasting and contribute to the development and assessment of effective vector control strategies in regions of mosquito expansion.
期刊介绍:
Parasites & Vectors is an open access, peer-reviewed online journal dealing with the biology of parasites, parasitic diseases, intermediate hosts, vectors and vector-borne pathogens. Manuscripts published in this journal will be available to all worldwide, with no barriers to access, immediately following acceptance. However, authors retain the copyright of their material and may use it, or distribute it, as they wish.
Manuscripts on all aspects of the basic and applied biology of parasites, intermediate hosts, vectors and vector-borne pathogens will be considered. In addition to the traditional and well-established areas of science in these fields, we also aim to provide a vehicle for publication of the rapidly developing resources and technology in parasite, intermediate host and vector genomics and their impacts on biological research. We are able to publish large datasets and extensive results, frequently associated with genomic and post-genomic technologies, which are not readily accommodated in traditional journals. Manuscripts addressing broader issues, for example economics, social sciences and global climate change in relation to parasites, vectors and disease control, are also welcomed.