Comprehensive overview of artificial intelligence in surgery: a systematic review and perspectives.

IF 2.9 4区 医学 Q2 PHYSIOLOGY Pflugers Archiv : European journal of physiology Pub Date : 2025-03-15 DOI:10.1007/s00424-025-03076-6
Olivia Chevalier, Gérard Dubey, Amine Benkabbou, Mohammed Anass Majbar, Amine Souadka
{"title":"Comprehensive overview of artificial intelligence in surgery: a systematic review and perspectives.","authors":"Olivia Chevalier, Gérard Dubey, Amine Benkabbou, Mohammed Anass Majbar, Amine Souadka","doi":"10.1007/s00424-025-03076-6","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid integration of artificial intelligence (AI) into surgical practice necessitates a comprehensive evaluation of its applications, challenges, and physiological impact. This systematic review synthesizes current AI applications in surgery, with a particular focus on machine learning (ML) and its role in optimizing preoperative planning, intraoperative decision-making, and postoperative patient management. Using PRISMA guidelines and PICO criteria, we analyzed key studies addressing AI's contributions to surgical precision, outcome prediction, and real-time physiological monitoring. While AI has demonstrated significant promise-from enhancing diagnostics to improving intraoperative safety-many surgeons remain skeptical due to concerns over algorithmic unpredictability, surgeon autonomy, and ethical transparency. This review explores AI's physiological integration into surgery, discussing its role in real-time hemodynamic assessments, AI-guided tissue characterization, and intraoperative physiological modeling. Ethical concerns, including algorithmic opacity and liability in high-stakes scenarios, are critically examined alongside AI's potential to augment surgical expertise. We conclude that longitudinal validation, improved AI explainability, and adaptive regulatory frameworks are essential to ensure safe, effective, and ethically sound integration of AI into surgical decision-making. Future research should focus on bridging AI-driven analytics with real-time physiological feedback to refine precision surgery and patient safety strategies.</p>","PeriodicalId":19954,"journal":{"name":"Pflugers Archiv : European journal of physiology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pflugers Archiv : European journal of physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00424-025-03076-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid integration of artificial intelligence (AI) into surgical practice necessitates a comprehensive evaluation of its applications, challenges, and physiological impact. This systematic review synthesizes current AI applications in surgery, with a particular focus on machine learning (ML) and its role in optimizing preoperative planning, intraoperative decision-making, and postoperative patient management. Using PRISMA guidelines and PICO criteria, we analyzed key studies addressing AI's contributions to surgical precision, outcome prediction, and real-time physiological monitoring. While AI has demonstrated significant promise-from enhancing diagnostics to improving intraoperative safety-many surgeons remain skeptical due to concerns over algorithmic unpredictability, surgeon autonomy, and ethical transparency. This review explores AI's physiological integration into surgery, discussing its role in real-time hemodynamic assessments, AI-guided tissue characterization, and intraoperative physiological modeling. Ethical concerns, including algorithmic opacity and liability in high-stakes scenarios, are critically examined alongside AI's potential to augment surgical expertise. We conclude that longitudinal validation, improved AI explainability, and adaptive regulatory frameworks are essential to ensure safe, effective, and ethically sound integration of AI into surgical decision-making. Future research should focus on bridging AI-driven analytics with real-time physiological feedback to refine precision surgery and patient safety strategies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.80
自引率
2.20%
发文量
121
审稿时长
4-8 weeks
期刊介绍: Pflügers Archiv European Journal of Physiology publishes those results of original research that are seen as advancing the physiological sciences, especially those providing mechanistic insights into physiological functions at the molecular and cellular level, and clearly conveying a physiological message. Submissions are encouraged that deal with the evaluation of molecular and cellular mechanisms of disease, ideally resulting in translational research. Purely descriptive papers covering applied physiology or clinical papers will be excluded. Papers on methodological topics will be considered if they contribute to the development of novel tools for further investigation of (patho)physiological mechanisms.
期刊最新文献
Comprehensive overview of artificial intelligence in surgery: a systematic review and perspectives. Neuronal subtype-dependent kinetics of EPSCs induced by thalamocortical projections from the ventroposteromedial thalamic nucleus to the insular cortex in rats. Special issue European Journal of Physiology: Artificial intelligence in the field of physiology and medicine. The lateral habenula regulates stress-related respiratory responses via the monoaminergic system. Controlled dietary phosphate loading in healthy young men elevates plasma phosphate and FGF23 levels.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1