Establishment and characterization of adap1-deficient zebrafish.

IF 1.7 4区 生物学 Q4 CELL BIOLOGY Development Growth & Differentiation Pub Date : 2025-03-15 DOI:10.1111/dgd.70004
Atsuo Kawahara, Sakyo Yasojima, Junko Koiwa, Saori Fujimaki, Hiroaki Ito, Mamiko Yamada, Kenjiro Kosaki, Yuhei Nishimura
{"title":"Establishment and characterization of adap1-deficient zebrafish.","authors":"Atsuo Kawahara, Sakyo Yasojima, Junko Koiwa, Saori Fujimaki, Hiroaki Ito, Mamiko Yamada, Kenjiro Kosaki, Yuhei Nishimura","doi":"10.1111/dgd.70004","DOIUrl":null,"url":null,"abstract":"<p><p>The adap1 (ADP-ribosylation factor GTPase-activating protein [ArfGAP] with dual pleckstrin homology [PH] domains 1) gene is predominantly expressed in the mouse brain and is important in neural differentiation and development. However, the functions of adap1 in morphogenesis, locomotor activity, and behaviors in vertebrates are not fully understood. Whole-mount in situ hybridization (WISH) analysis revealed that adap1 was widely expressed in the zebrafish brain, including the forebrain, midbrain, and hindbrain, during early embryogenesis. To investigate the physiological function of the adap1 gene, we generated zebrafish adap1 mutants harboring frameshift mutations around codon 120 of adap1. The adap1 mutants containing homozygous mutant alleles exhibited no apparent morphological abnormalities at 1 day postfertilization (dpf), and the spontaneous coiling and touch response of the adap1 mutants were comparable to those of the wild-type fish. In addition, the expression of neural genes, such as emx1, mbx, and huC, was comparable between the wild-type fish and the adap1 mutants at 1 dpf. The adap1 mutants grew to adulthood without exhibiting any apparent swimming defects. The adult adap1 mutants spent more time than the wild type in the center region of the open field test. In the social behavior test, zebrafish containing the adap1 mutant alleles spent more time than the wild type in the regions near the chambers where novel conspecifics swam. These results imply the involvement of the adap1 gene in regulating approach behavior to visual cues from conspecifics.</p>","PeriodicalId":50589,"journal":{"name":"Development Growth & Differentiation","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Development Growth & Differentiation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/dgd.70004","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The adap1 (ADP-ribosylation factor GTPase-activating protein [ArfGAP] with dual pleckstrin homology [PH] domains 1) gene is predominantly expressed in the mouse brain and is important in neural differentiation and development. However, the functions of adap1 in morphogenesis, locomotor activity, and behaviors in vertebrates are not fully understood. Whole-mount in situ hybridization (WISH) analysis revealed that adap1 was widely expressed in the zebrafish brain, including the forebrain, midbrain, and hindbrain, during early embryogenesis. To investigate the physiological function of the adap1 gene, we generated zebrafish adap1 mutants harboring frameshift mutations around codon 120 of adap1. The adap1 mutants containing homozygous mutant alleles exhibited no apparent morphological abnormalities at 1 day postfertilization (dpf), and the spontaneous coiling and touch response of the adap1 mutants were comparable to those of the wild-type fish. In addition, the expression of neural genes, such as emx1, mbx, and huC, was comparable between the wild-type fish and the adap1 mutants at 1 dpf. The adap1 mutants grew to adulthood without exhibiting any apparent swimming defects. The adult adap1 mutants spent more time than the wild type in the center region of the open field test. In the social behavior test, zebrafish containing the adap1 mutant alleles spent more time than the wild type in the regions near the chambers where novel conspecifics swam. These results imply the involvement of the adap1 gene in regulating approach behavior to visual cues from conspecifics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
adap1缺陷斑马鱼的建立和特征描述
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Development Growth & Differentiation
Development Growth & Differentiation 生物-发育生物学
CiteScore
4.60
自引率
4.00%
发文量
62
审稿时长
6 months
期刊介绍: Development Growth & Differentiation (DGD) publishes three types of articles: original, resource, and review papers. Original papers are on any subjects having a context in development, growth, and differentiation processes in animals, plants, and microorganisms, dealing with molecular, genetic, cellular and organismal phenomena including metamorphosis and regeneration, while using experimental, theoretical, and bioinformatic approaches. Papers on other related fields are also welcome, such as stem cell biology, genomics, neuroscience, Evodevo, Ecodevo, and medical science as well as related methodology (new or revised techniques) and bioresources. Resource papers describe a dataset, such as whole genome sequences and expressed sequence tags (ESTs), with some biological insights, which should be valuable for studying the subjects as mentioned above. Submission of review papers is also encouraged, especially those providing a new scope based on the authors’ own study, or a summarization of their study series.
期刊最新文献
Establishment and characterization of adap1-deficient zebrafish. Transforming growth factor-β-mediated regulation of atoh1-expressing neural progenitors is involved in the generation of cerebellar granule cells in larval and adult zebrafish. The property of larval cells of the scleractinian coral, Acropora tenuis, deduced from in vitro cultured cells. Issue Information Chromosomal localization of PHOX2B during M-phase is disrupted in disease-associated mutants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1