Geoffrey M. Diederich, Mai Nguyen, John Cenker, Jordan Fonseca, Sinabu Pumulo, Youn Jue Bae, Daniel G. Chica, Xavier Roy, Xiaoyang Zhu, Di Xiao, Yafei Ren, Xiaodong Xu
{"title":"Exciton dressing by extreme nonlinear magnons in a layered semiconductor","authors":"Geoffrey M. Diederich, Mai Nguyen, John Cenker, Jordan Fonseca, Sinabu Pumulo, Youn Jue Bae, Daniel G. Chica, Xavier Roy, Xiaoyang Zhu, Di Xiao, Yafei Ren, Xiaodong Xu","doi":"10.1038/s41565-025-01890-8","DOIUrl":null,"url":null,"abstract":"<p>Collective excitations presenting nonlinear dynamics are fundamental phenomena with broad applications. A prime example is nonlinear optics, where diverse frequency-mixing processes are central to communication and attosecond science, and extreme (>sixth-order) harmonic generation provides broad wavelength conversion. Leveraging recent progress in van der Waals magnetic semiconductors, we demonstrate nonlinear optomagnonic coupling. In the layered antiferromagnetic semiconductor CrSBr, we observe exciton states dressed by up to 20 harmonics of magnons, resulting from their extreme nonlinearities. We also create tunable optical sidebands via sum- and difference-frequency generation between two optically bright magnon modes under symmetry-breaking magnetic fields. Moreover, we can tune the observed difference-frequency generation mode into resonance with one of the fundamental magnons, which results in parametric amplification of magnons. Our findings realize the modulation of the optical-frequency exciton with the extreme nonlinearity of magnons at microwave frequencies, which could find applications in magnonics and hybrid quantum systems, and provide a method for optomagnonic neuromorphic computing devices.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"229 1","pages":""},"PeriodicalIF":38.1000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41565-025-01890-8","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Collective excitations presenting nonlinear dynamics are fundamental phenomena with broad applications. A prime example is nonlinear optics, where diverse frequency-mixing processes are central to communication and attosecond science, and extreme (>sixth-order) harmonic generation provides broad wavelength conversion. Leveraging recent progress in van der Waals magnetic semiconductors, we demonstrate nonlinear optomagnonic coupling. In the layered antiferromagnetic semiconductor CrSBr, we observe exciton states dressed by up to 20 harmonics of magnons, resulting from their extreme nonlinearities. We also create tunable optical sidebands via sum- and difference-frequency generation between two optically bright magnon modes under symmetry-breaking magnetic fields. Moreover, we can tune the observed difference-frequency generation mode into resonance with one of the fundamental magnons, which results in parametric amplification of magnons. Our findings realize the modulation of the optical-frequency exciton with the extreme nonlinearity of magnons at microwave frequencies, which could find applications in magnonics and hybrid quantum systems, and provide a method for optomagnonic neuromorphic computing devices.
期刊介绍:
Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations.
Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.